摘要:
A method of removing CO from a mixture of CO and saturated or unsaturated hydrocarbons is provided. In one embodiment, the method is to contact a feed stream with an oxygen transfer agent; and then oxidize at least a portion of the CO to CO2 to produce a stream enriched in CO2. The saturated and unsaturated hydrocarbons in the feed are not further oxidized during the oxidation. The oxygen transfer agent includes at least one of: i) water; ii) at least one reducible metal oxide; iii) at least one reducible chalcogen; or mixtures thereof. In another embodiment, the CO is converted to methane. The unsaturated hydrocarbons in the feed are not hydrogenated. In both of these alternatives, the CO2 or methane are then removed. Systems for removing the CO are also provided.
摘要:
A carbon monoxide oxidation device for oxidizing carbon monoxide contained in a hydrogen rich reformat gas includes a housing, wherein the housing incorporates an oxidation catalyst, which is adapted to oxidize the carbon monoxide of the reformat gas by an oxidizing agent to carbon dioxide, includes upstream of the catalyst at least one gas inlet for providing a gas stream of at least the reformat gas into the housing, includes downstream of the catalyst a gas outlet for exiting treated gas from the housing, and incorporates a gas stream perturbation device which is arranged upstream of the catalyst and which is adapted to provide a perturbation in the gas stream, wherein the gas stream perturbation device is designed as at least one propeller-shaped plate with a plate portion having a surface facing the gas stream and at least one blade which is connected to the plate portion and has a leading edge and an effluent edge, wherein a surface defined between leading edge and effluent edge is inclined in relation to the surface of the plate portion with a predetermined blade inclination angle, thereby defining at least one opening in the plate.
摘要:
The present invention relates to a method for preparing a catalyst comprising a ruthenium-containing catalyst layer highly dispersed with a uniform thickness on a surface of a substrate having a structure, which comprises first aging a mixed solution of a ruthenium precursor-containing solution and a precipitating agent to form a ruthenium-containing precipitate seeds, secondarily aging the first aged mixed solution to grow the seeds thereby forming ruthenium-containing precipitate particles, and then contacting the particles with a substrate to deposit the particles on the surface of the substrate. Since the catalyst has a structure in which the round shaped ruthenium-containing precipitate particles are piled to form the ruthenium-containing catalyst layer, it has a large specific surface area. Thus, the catalyst may exhibit excellent catalytic performance in various reactions for producing hydrogen using a ruthenium catalyst.
摘要:
In various implementations, feed streams that include methane are reacted to produce synthesis gas. The synthesis gas may be further processed to produce ultrapure, high-pressure hydrogen streams.
摘要:
The present invention relates to a method for preparing a catalyst comprising a ruthenium-containing catalyst layer highly dispersed with a uniform thickness on a surface of a substrate having a structure, which comprises first aging a mixed solution of a ruthenium precursor-containing solution and a precipitating agent to form a ruthenium-containing precipitate seeds, secondarily aging the first aged mixed solution to grow the seeds thereby forming ruthenium-containing precipitate particles, and then contacting the particles with a substrate to deposit the particles on the surface of the substrate. Since the catalyst has a structure in which the round shaped ruthenium-containing precipitate particles are piled to form the ruthenium-containing catalyst layer, it has a large specific surface area. Thus, the catalyst may exhibit excellent catalytic performance in various reactions for producing hydrogen using a ruthenium catalyst.
摘要:
A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.
摘要:
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
摘要:
A fuel treatment device includes: a reforming section that produces a hydrogen-rich gas containing carbon monoxide and water; a converting section that produces a hydrogen-rich gas containing a lower concentration of carbon monoxide by reacting the carbon monoxide and the water in the hydrogen-rich gas; a mixing channel that produces a mixed gas by mixing the hydrogen-rich gas containing the lower concentration of the carbon monoxide with air containing oxygen; an air supplying section that is connected to an upstream end of the mixing channel and supplies the air to the mixing channel; and a selective oxidizing section that is connected to a downstream end of the mixing channel and converts the mixed gas into a fuel gas by reacting the carbon monoxide and the oxygen in the mixed gas, wherein the mixing channel includes a gas supply region at the upstream side and a gas diffusion region at the downstream side, and has two or more gas supply ports connecting the gas supply region with the converting section, and a length of the gas diffusion region is 0.5 to 2 times a length of the gas supply region.
摘要:
A hydrogen production apparatus includes a preferential oxidation unit that preferentially oxidizes carbon monoxide in a reformed gas containing hydrogen, a vaporization flow path that passes water to generate steam, and a gas flow path through which the reformed gas passes. The gas flow path is arranged between the preferential oxidation unit and the vaporization flow path. The reformed gas passes through the gas flow path and thereafter flows into the preferential oxidation unit.
摘要:
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.