摘要:
A belite-ye'elimite-ternesite cement clinker includes: ye'elimite: 20-50 wt. %; ternesite: 24-50 wt. %; belite: 10-35 wt. %; and free-calcium sulfate (f-C$): 2-10 wt. %. The composition of cement clinker includes an appropriate amount of ye'elimite minerals, ensuring fast early hydration and high early strength of the cement clinker. The cement clinker further includes a certain amount of free-calcium sulfate (f-C$), and is characterized by its good grindability, leading to decreased energy and mechanical losses essential for clinker grinding. This environmentally conscious and energy-efficient method aligns with the global objective of reducing carbon emissions.
摘要:
A cement-reduced construction composition comprises a) a cementitious binder comprising one or more calcium silicate mineral phases and one or more calcium aluminate mineral phases, and having a Blaine surface area of at least 3800 cm2/g; b) a fine material having a Dv90 of less than 200 μm, selected from alkali-activatable binders, rock powders and inorganic pigments, or mixtures thereof; c) optionally, an extraneous aluminate source; d) a sulfate source; and e) a polyol. The composition contains a controlled amount of available aluminate, calculated as Al(OH)4−, from the calcium aluminate mineral phases plus the optional extraneous aluminate source; and the molar ratio of total available aluminate to sulfate is 0.4 to 2.0. The construction composition further comprises f) an ettringite formation controller and g) a co-retarder. The cement-reduced construction composition is a reduced carbon footprint construction composition and exhibits high early strength, high final strength, sufficient open time, high durability, and reduced shrinkage compared to ordinary Portland cement based mixes.
摘要:
The present disclosure concerns an aluminosilicate having a Blaine fineness of about 500 m2/kg to about 3000 m2/kg and/or a specific surface area of about 4 m2/g to about 20 m2/g, as well as the uses thereof. The present disclosure also comprises a dry cementing composition and a mortar or concrete composition, the compositions comprising said aluminosilicate. The present disclosure also comprises a process for the manufacture of aluminosilicate. The process comprises: roasting a spodumene concentrate in an acid medium; leaching the acidic roast spodumene concentrate so as to obtain a mixture comprising a solid comprising the aluminosilicate and a leachate; and separating the aluminosilicate from the leachate in an acid medium, wherein said aluminosilicate contains a calcium concentration of less than about 5%.
摘要:
A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
摘要:
The invention provides a pourable composition comprising calcium sulfate hemihydrate; optionally, cement; one or more anionic surfactants selected from alkyl anionic surfactants, alkyl ether anionic surfactants, alkyl aryl anionic surfactants, and combinations thereof; one or more set accelerator additives; and water.
摘要:
The present invention describes improved cellular compositions that contain anhydrite that reaches high compression resistance values, of the order of 110 to 138 Kg/cm , as well as methods of obtaining of these. The obtained cellular materials with the compositions of the invention can be used like constructive structural materials, and without they present the problems commonly associate to the anhydrous calcium sulphate presence in similar materials.
摘要翻译:本发明描述了改进的细胞组合物,其含有达到高达110至138Kg / cm 3的高抗压性值的无水石膏,以及获得这些的方法。 获得的具有本发明组合物的多孔材料可以像结构化的结构材料一样使用,并且不存在与类似材料中的无水硫酸钙存在相关的问题。
摘要:
A composition comprises anhydrous alumino-silicate, diatomaceous earth, and/or other natural pozzolans, white clinker, and white gypsum interground together and in a ratio by weight of 5-20% anhydrous alumino-silicate, diatomaceous earth, and/or other natural pozzolans, 3-7% gypsum, and 73-92% white clinker.
摘要:
A regulating cementitious material for promoting hydration of Portland cement is provided. The regulating cementitious material may include ingredients by weight as follows: ye'elimite, 27˜68 parts; anhydrite, 29˜68 parts; lithium nitrite, 2˜5 parts; ethylene glycol monoisopropanolamine, 0.14˜0.29 parts; triethanolamine acetate, 0.04˜0.09 parts; and polyglycerol, 0.04˜0.09 parts. An early strength of Portland cement can be improved through a cooperative hydration between minerals and an enhanced solubilization of a complexing agent.
摘要:
A hydraulic binder including (in % by dry weight); A. at least 50 of at least one ground and granulated blast-furnace slag; B. more than 5 of at least one calcium aluminate cement and/or of at least one calcium sulfoaluminate cement; C. more than 5 of at least one source of sulfate ions; D. between 1 and 5 of Ca(OH)2 and/or Portland cement; E. between 0.01 and 1 of at least one alkali metal carbonate; F. and at least one alkalifying reagent consisting of at least one alkali metal carbonate and/or bicarbonate, different from E; under the following conditions: (i) amount of C allows sulfate ions of C to react with B and A; (ii) the amount of F sufficiently causes a reaction with D in water resulting in a wet formulation with a pH not less than 12, for a water-to-mortar mixing rate between 10 and 35% by weight.
摘要:
The present invention relates to an improved drywall finish and joint compound comprised of a mixture of fractured aluminum oxide, glass bead, calcium sulfate, calcium carbonate, magnesium aluminum phyllosilicate, aluminum silicate hydroxide, polyvinyl acetate, polyvinyl alcohol, metamorphic mineral, sodium bicarbonate, silicon and aluminides, talc, kaolin, and metal oxide. The improved drywall finish and joint compound is capable of adhering to drywall, wood, concrete, brick, stone, steel, and other surfaces, and can be applied using a conventional trowel or similar device, cures quickly, and eliminates the need for taping and bedding. The compound saves extensive time and labor when installing, repairing, or working with drywall.