摘要:
Techniques regarding post polymerization modifications to polycarbonate polymers via a flow reactor are provided. For example, one or more embodiments described herein can comprise a cyclic carbonate monomer that can be employed to facilitate polymerization of one or more polycarbonate platforms susceptible to post polymerization modification. For instance, one or more embodiments can regard a cyclic carbonate molecular backbone covalently bonded to an aryl halide functional group via in accordance with a chemical structure selected from the group consisting of: In the chemical structures, “R1” can be selected from the group consisting of a hydrogen atom and a functional group comprising a first alkyl group; “L” can represent a linkage group, comprising: a second alkyl group and an end group having at least one member selected from the group consisting of an oxygen atom and a nitrogen atom; and “A” can represent the aryl halide functional group.
摘要:
Disclosed are monomeric compounds which may be polymerized to form novel biodegradable and bioresorbable polymers and co-polymers. These polymers and co-polymers, while not limited thereto, may be adapted for radioopacity and are useful for medical device applications and controlled release therapeutic formulations.
摘要:
The instant invention relates to new compounds of the formula I R1 and R2 are each independently of the other a fluorine containing group, R3 and R4 are each independently of the other hydrogen, a fluorine containing group, C1-C12alkyl, phenyl or R4, together with the carbon atom to which they are bonded, form a C5-C8-cycloalkylidene ring that is unsubstituted or substituted by from 1 to 3 C1-C4alkyl groups; R5, R6, R7 and R8 are each independently of the other hydrogen, C1-C12alkyl or C3-C12alkenyl, X1 and X2 are each independently of the other a direct bond or C1-C12alkylene, m is 1 to 10,000, and n is 0 to 10,000. These new compounds of the formula I are useful as reducers of surface energy for organic materials such as polycarbonates, polyesters or polyketones or their mixtures, blends or alloys. Polymers with such a reduced surface energy possess an “easy to clean”, “self-cleaning” “antisoiling”, “soil-release” “antigraffiti”, “oil resistance”, “solvent resistance”, “chemical resistance”, “self lubricating”, “scratch resistance”, “low moisture absorption” and “hydrophobic” surface.
摘要:
This invention relates to 1,2-di(4-hydroxyaryl)tetrafluoroethanes of the general formula (I) wherein R are each, independently of one another, hydrogen, F, Cl, Br, I, CN, COOR2, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-perfluoroalkyl, C1-C4-perfluoroalkoxy, C1-C4-perfluoroalkylthio, C1-C4-polyfluoroalkyl, C1-C4-polyfluoroalkoxy, or C1-C4-polyfluoroalkylthio, R2 is C1-C4-alkyl, and n is an integer from 0 to 4. This invention further relates to the preparation of such compounds as well as to precursors and intermediates that can be used in their preparation.
摘要:
High flow brominated polycarbonates, useful as flame retardant additives for other polymers such as polyesters, are obtained by equilibration of a brominated aromatic polycarbonate such as a tetrabromobisphenol A homo- or copolycarbonate with a di- or polyhydroxy aromatic compound such as bisphenol A, or a diaryl carbonate, and an equilibration catalyst, under conditions such that the weight average molecular weight of the brominated polycarbonate is reduced by at least 35%. Preferred equilibration catalysts are Group I metal carboxylates, such as sodium stearate, and hexaalkylguanidinium salts.
摘要:
Perfluoropolyethereal compounds having polycarbonate structure, and general formula: ##STR1## wherein c is an integer comprised between 0 and 10, preferably between 0 and 3,n is an integer from 2 to 1,000, extremes included,Rf is a poly-fluorooxyalkylenic chain, having number average molecular weight (Mn) comprised between 500 and 10,000.
摘要:
There is provided an aromatic polycarbonate obtained by reacting a carbonate precursor substance with a dihydric phenol comprising mainly 2,2-bis(4-hydroxyphenol)-1,1,1,3,3,3-hexafluoropropane having specific characteristics. This aromatic polycarbonate has the following characteristics. That is, with respect to 5 wt % solution of the aromatic polycarbonate in methylene chloride, after being filtered through a filter having a pore diameter of 0.1 .mu.m, the light transmittance at 400 nm measured by using a quartz cell having an optical path length of 250 mm, is 85% or more in terms of light transmittance per cm of the polymer; and when 0.7 g of the aromatic polycarbonate is dissolved in 100 ml of methylene chloride, the specific viscosity of the thus obtained solution measured at 20.degree. C., is in the range of 0.160 to 0.418. The aromatic polycarbonate is excellent in heat resistance and transparency and good in moldability, and is suitable for a plastic optical waveguide that is small in transmission loss and excellent in heat resistance.
摘要:
There is provided an aromatic polycarbonate copolymer obtained by reacting a dihydric phenol component comprising mainly 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane and 9,9-bis(4-hydroxyphenyl)fluorene or 1,1-bis(4-hydroxyphenyl)-1-phenylethane in a prescribed ratio with a carbonate precursor substance. This aromatic polycarbonate copolymer has a specific viscosity in a limited range. The aromatic polycarbonate copolymer is excellent in optical characteristics, transparency, hydrolysis resistance, heat resistance, oxidation resistance, and heat stability and good in moldability, and is suitable for a plastic optical waveguide that is small in transmission loss and excellent in heat resistance.
摘要:
A process for preparing halogenated polycarbonate wherein the total amount of base the end pH of the aqueous phaser and the amount of coupling catalyst employed in the reaction are controlled to selected levels.
摘要:
Disclosed herein is a polycarbonate copolymer comprising repeating units respectively made of a bisphenol A and a tetrahalogenobisphenol A and having a trihalogenophenoxy group as an end group at the terminal, particularly both terminals thereof and a method for efficiently producing said polycarbonate copolymer. This polycarbonate copolymer is superior in impact resistance, flame retardance, molding thermostability and the like, is good in hydrolytic resistance, is much less liable to cause a mold rust and has high quality. Therefore, this polycarbonate copolymer will be extensively used in various industrial materials, for example as the flame retardant parts for household electric appliances, office automation apparatuses and the like.