摘要:
The present invention relates to a process to produce compounds of the formula (1) which are suitable for use in electronic devices, as well as to intermediate compounds of formula (Int-1) and compounds of formula (1-1) and (1-2) obtained via the process. These compounds are particularly suitable for use organic electroluminescent devices. The present invention also relate to electronic devices, which comprise these compounds.
摘要:
The invention relates to a new process for the manufacture of fluoroaryl compounds and derivatives thereof, in particular of fluorobenzenes and derivatives thereof, and especially wherein said manufacture relates to an environmentally friendly production of the said compounds. Thus, the present invention overcomes the disadvantages of the prior art processes, and in a surprisingly simple and beneficial manner, and as compared to the prior art processes, in particular, the invention provides a more efficient and energy saving processes, and also provides a more environmentally friendly process, for the manufacture of nuclear fluorinated aromatics, and preferably of nuclear fluorinated fluorobenzenes. Accordingly, in one aspect of the invention, an industrially beneficial process for preparing fluorobenzenes from halobenzene precursors using HF to form hydrogen halide is provided by the present invention. A beneficial and surprisingly simple use of chlorobenzene as an industrially interesting starting material in the manufacture of fluorobenzene is provided.
摘要:
The present disclosure provides a method for producing a reaction gas containing R-1132(E) with selectivity higher than that of known methods. Specifically, the present disclosure provides a method for producing a reaction gas containing (E)-1,2-difluoroethylene (R-1132(E)), (1) the method comprising a step of subjecting a starting material gas containing one or more fluoromethanes selected from the group consisting of chlorodifluoromethane (R-22), difluoromethane (R-32), and fluoromethane (R-41) to a reaction that involves thermal decomposition to obtain the reaction gas, and (2) the starting material gas having a water vapor content of 1 volume % or less.
摘要:
The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, comprising the steps: i) providing a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2,3,3,3-tetrafluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
摘要:
A solid-supported catalyst ligand which chelates palladium (II) species to form a complex that functions as a heterogeneous catalyst that is stable and can be recycled without significantly losing any catalytic activity in a variety of chemical transformations, a method for producing the solid-supported catalyst ligand and a method for catalyzing a palladium cross-coupling reaction, such as the Suzuki-Miyaura, Mizoroki-Heck, and Sonagashira reactions.
摘要:
A solid-supported catalyst ligand which chelates palladium (II) species to form a complex that functions as a heterogeneous catalyst that is stable and can be recycled without significantly losing any catalytic activity in a variety of chemical transformations, a method for producing the solid-supported catalyst ligand and a method for catalyzing a palladium cross-coupling reaction, such as the Suzuki-Miyaura, Mizoroki-Heck, and Sonagashira reactions.
摘要:
A functionalized magnetic nanoparticle including an organometallic sandwich compound and a magnetic metal oxide. The functionalized magnetic nanoparticle may be reacted with a metal precursor to fol in a catalyst for various C—C bond forming reactions. The catalyst may be recovered with ease by attracting the catalyst with a magnet.
摘要:
The present application provides, among other things, compounds and methods for metathesis reactions. In some embodiments, the present disclosure provides methods for preparing alkenyl halide with regioselectivity and/or stereoselectivity. In some embodiments, the present disclosure provides methods for preparing alkenyl halide with regioselectivity and Z-selectivity. In some embodiments, the present disclosure provides methods for preparing alkenyl halide with regioselectivity and E-selectivity. In some embodiments, provided technologies are particularly useful for preparing alkenyl fluorides. In some embodiments, a provided compound useful for metathesis reactions has the structure of formula II-a. In some embodiments, a provided compound useful for metathesis reactions has the structure of formula II-b.
摘要:
A method for producing a multisubstituted biphenyl compound is represented by the following formula (2), including a step of coupling a substituted benzene compound represented by the following formula (1) in the presence of a solid catalyst with gold immobilized onto a support.
摘要:
To provide an economically advantageous process for producing industrially useful HFO-1234yf efficiently and in a sufficiently controlled state by one reaction involving thermal decomposition, by using readily available raw material. A process for producing 2,3,3,3-tetrafluoropropene from a raw material composition containing chlorodifluoromethane and chloromethane, by a synthetic reaction involving thermal decomposition, which comprises (a) a step of supplying the chlorodifluoromethane and the chloromethane to a reactor, as preliminarily mixed or separately, in such amounts that the chloromethane would be in a ratio of from 0.01 to 3 mol to 1 mol of the chlorodifluoromethane, (b) a step of supplying a heat medium to the reactor, and (c) a step of bringing the heat medium in contact with the chlorodifluoromethane and the chloromethane in the reactor to form the 2,3,3,3-tetrafluoropropene.