Abstract:
The invention describes a process for reducing the surface energy of organic materials such as for example increasing the oil and water repellency and stain release of organic materials, which comprises treating the organic material with at least a compound of the formula I wherein the general symbols are as defined in claim 1; especially wherein at least one of the radicals R2, R3 or R4 is —CH(R11)—S(O)p—R12; R11 is hydrogen, C1-C8alkyl, unsubstituted or with C1-C4alkyl substituted phenyl; R12 is a monovalent perfluorinated alkyl or alkenyl, linear or branched organic radical having four to twenty fully fluorinated carbon atoms, and p is 0, 1 or 2.
Abstract:
Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation comprise as stabilizers at least one compound of the formula I wherein the general symbols are as defined in claim 1. The compounds of formula I are especially useful as stabilizers for protecting polymers and lubricants against oxidative, thermal or light-induced degradation and as scavengers for oxidized developer in color photographic material.
Abstract:
Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation and/or are able to reduce the surface energy of organic materials comprise at least one compound of the formula (I) wherein the general symbols are as defined in claim 1.
Abstract:
The invention describes a composition comprising a) a naturally occurring or synthetic elastomer susceptible to oxidative, thermal, dynamic, light-induced and/or ozone-induced degradation, b) a white reinforcing filler, and c) as coupling agent, at least one compound of the formula (I) wherein the general symbols are as defined in claim 1, or an oligomeric hydrolysis product of the compound of the formula (I).
Abstract:
The instant invention relates to new compounds of the formula I wherein the general symbols are as defined in claim 1 and R1 and R2 are each independently of the other a silicon containing group. These new compounds of the formula I are useful as reducers of surface energy for organic materials such as polycarbonates, polyesters or polyketones or their mixtures, blends or alloys. Polymers with such a reduced surface energy possess an “easy to clean”, “self-cleaning” “antisoiling”, “soil-release” “antigraffiti”, “oil resistance”, “solvent resistance”, “chemical resistance”, “self lubricating”, “scratch resistance”, “low moisture absorption”, “dirt pickup resistance”, “slip properties” and “hydrophobic surface”; and antiadhesion properties against proteins and against microorganism such as for example bacteria, fungi and algae.
Abstract:
Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation and/or are able to reduce the surface energy of organic materials comprise at least one compound of the formula (I) wherein the general symbols are as defined in claim 1.
Abstract:
The instant invention relates to oligo- and poly-carbonates terminated with silicon containing groups which are useful as reducers of surface energy for organic materials such as polycarbonates, polyesters or polyketones or their mixtures, blends or alloys. Polymers with such reduced surface energy possess self-cleaning, anti-soiling, anti-graffiti, oil resistance, solvent resistance, chemical resistance, self-lubricating, scratch resistance, low moisture absorption, dirt pickup resistance, slip properties and a hydrophobic surface; and display anti-adhesion properties against proteins and against microorganisms such as for example, bacteria, fungi and algae.
Abstract:
The instant invention discloses a process for preventing contact discoloration of substrates coming into contact with elastomers and stabilizing elastomers to prevent oxidative, thermal, dynamic, light-induced and/or ozone-induced degradation, which comprises incorporating into the elastomers, or applying to these, at least a compound of the formula (I) wherein R1 is C1-C12alkyl, R2 is C1-C12alkyl, or R1 and R2 together with the carbon atom to which they are attached form an unsubstituted or with C1-C4alkyl substituted C5-C12cycloalkyl ring; R3 is hydrogen or —CH2—S(O)m—R5, R4 and R5 independently of each other are unsubstituted or with cyano substituted C5-C18-alkyl; C7-C9phenylalkyl, unsubstituted or with halogen, hydroxyl, cyano or C1-C4alkyl substituted phenyl or naphthyl; benzothiazolyl or —R6—CO2—R7, R6 is C1-C18alkylene, R7 is C1-C18alkyl, and m is 0, 1 or 2. The instant invention discloses also novel compounds of the formula (I), new mixtures of compounds of the formula (I) and compositions thereof in elastomers.
Abstract:
A novel process for preparing a aminophenyl-triazines of the formula (I′), comprises reacting a corresponding halogenophenyltriazine of the formula (I″), with an amine of the formula (IX), H—NR′2R′3, wherein X is chloro or preferably fluoro and the symbols A, A′, R′2, R′3 and R44 are organic residues as defined in claim 1. Products of this process and derivatives thereof are useful as stabilizers and UV absorbers for protecting an organic material against damage by light, oxygen and/or heat, or as recording dye in an optical recording medium, especially for writing or reading digital information in a recording layer using laser radiation of wavelength less than 450 nm.
Abstract:
The invention relates to cationic siloxane derivatives for use especially as fungicides and/or antiadhesives. The cationic siloxane derivatives have the formula (I), wherein R1, R2, R3, R4, R4′, R5 and n are as defined in the description.