System for producing high-quality gas

    公开(公告)号:US11365363B2

    公开(公告)日:2022-06-21

    申请号:US16865523

    申请日:2020-05-04

    摘要: A system for producing high-quality gas includes a heat carrier hoist, a coke feeder, a heat carrier heating furnace, a gas mixer, a high-temperature induced draft fan, a heat carrier storage tank, a dryer, a hopper, a concentrating solar collection pyrolysis-gasification reactor having a double-tube structure, a three-phase separator and a coke collecting bin. The system may use an adjustable concentrating solar collection technology in combination with a heat carrier circulation heating process, so as to effectively solve heat requirements of the waste pyrolysis and gasification process, reduce the waste material consumption caused by energy supply, and improve the effective utilization of raw materials.

    FEED LOCATION FOR GASIFICATION OF PLASTICS AND SOLID FOSSIL FUELS

    公开(公告)号:US20220169933A1

    公开(公告)日:2022-06-02

    申请号:US17651185

    申请日:2022-02-15

    摘要: Pre-ground plastics of small particle size not more than 2 mm are co-fed into a solid fossil fuel fed entrained flow partial oxidation gasifier. A syngas composition can be made by charging an oxidant and a feedstock composition comprising recycle plastics and a solid fossil fuel to a gasification zone within a gasifier; gasifying the feedstock composition together with the oxidant in said gasification zone to produce said syngas composition; and discharging at least a portion of said syngas composition from said gasifier; wherein the recycled plastics are added to a feed point comprising a solid fossil fuel belt feeding a grinder after the solid fossil fuel is loaded on the belt, a solid fossil fuel belt feeding a grinder before the solid fossil fuel is loaded onto the belt, or a solid fossil fuel slurry storage tank containing a slurry of said solid fossil fuel ground to a size as the size fed to the gasification zone.

    Universal feeder for gasification reactors

    公开(公告)号:US11279894B2

    公开(公告)日:2022-03-22

    申请号:US16922824

    申请日:2020-07-07

    摘要: A universal feeder system that combines with a fluidized bed gasification reactor for the treatment of multiple diverse feedstocks including sewage sludge, municipal solid waste, wood waste, refuse derived fuels, automotive shredder residue and non-recyclable plastics. The invention thereby also illustrates a method of gasification for multiple and diverse feedstocks using a universal feeder system. The feeder system comprises one or more feed vessels and at least one live bottom dual screw feeder. The feed vessel is rectangular shaped having three vertical sides and an angled side of no less than 60 degrees from the horizontal to facilitate proper flow of feedstock material that have different and/or variable flow properties. The feedstocks are transferred through an open bottom chute to a live bottom dual screw feeder and through another open bottom chute to a transfer screw feeder that conveys feedstock to the fuel feed inlets of a gasifier.

    Methods and apparatus for recycling tail gas in syngas fermentation to ethanol

    公开(公告)号:US11202989B2

    公开(公告)日:2021-12-21

    申请号:US16751981

    申请日:2020-01-24

    申请人: LanzaTech, Inc.

    摘要: The invention present provides a method (and suitable apparatus) to convert biomass to ethanol, comprising gasifying the biomass to produce raw syngas; feeding the raw syngas to an acid-gas removal unit to remove at least some CO2 and produce a conditioned syngas stream; feeding the conditioned syngas stream to a fermentor to biologically convert the syngas to ethanol; capturing a tail gas from an exit of the fermentor, wherein the tail gas comprises at least CO2 and unconverted CO or H2; and recycling a first portion of the tail gas to the fermentor and/or a second portion of the tail gas to the acid-gas removal unit. This invention allows for increased syngas conversion to ethanol, improved process efficiency, and better overall biorefinery economics for conversion of biomass to ethanol.

    All-steam gasification with carbon capture

    公开(公告)号:US11193074B2

    公开(公告)日:2021-12-07

    申请号:US16559216

    申请日:2019-09-03

    摘要: A carbonaceous fuel gasification system for all-steam gasification with carbon capture includes a micronized char preparation system comprising a devolatilizer that receives solid carbonaceous fuel, hydrogen, oxygen, and fluidizing steam and produces micronized char, steam, volatiles, hydrogen, and volatiles at outlets. An indirect gasifier includes a vessel comprising a gasification chamber that receives the micronized char, a conveying fluid, and steam. The gasification chamber produces syngas, ash, and steam at one or more outlets. A combustion chamber receives a mixture of hydrogen and oxidant and burns the mixture of hydrogen and oxidant to provide heat for gasification and for heating incoming flows, thereby generating steam and nitrogen. The heat for gasification is transferred from the combustion chamber to the gasification chamber by circulating refractory sand. The system of the present teaching produces nitrogen free high hydrogen syngas for applications such as IGCC with CCS, CTL, and Polygeneration plants.

    All-steam gasification for supercritical CO2 cycle system

    公开(公告)号:US11193073B2

    公开(公告)日:2021-12-07

    申请号:US16746484

    申请日:2020-01-17

    摘要: A carbonaceous fuel gasification system for a supercritical CO2 power cycle system includes a micronized char preparation system comprising a devolatilizer that receives solid carbonaceous fuel, hydrogen, oxygen, and fluidizing steam and produces micronized char, steam, hydrogen, and volatiles. An indirect gasifier includes a vessel comprising a gasification chamber that receives the micronized char, a conveying gas, and steam where the gasification chamber provides syngas, ash, and steam. A combustion chamber receives syngas and an oxidant and burns the mixture of syngas with the oxidant to provide heat for gasification and for heating incoming flows, thereby generating steam and CO2. The heat for gasification is transferred from the combustion chamber to the gasification chamber by circulating refractory sand. A syngas cooler cools the syngas and generates steam and provides to a supercritical CO2 power cycle system that performs a supercritical CO2 power cycle for generating power.

    SLAG CRUSHER, GASIFIER, INTEGRATED GASIFICATION COMBINED CYCLE, AND ASSEMBLY METHOD OF SLAG CRUSHER

    公开(公告)号:US20210339260A1

    公开(公告)日:2021-11-04

    申请号:US17269632

    申请日:2019-12-17

    摘要: Provided are a slag crusher, a gasifier, an integrated gasification combined cycle, and an assembly method of a slag crusher that can ensure the strength of a guide rod. The slag crusher includes: a porous member screen; a spreader that is reciprocated in a predetermined direction along a top surface of the screen and crushes the slag accumulated on the screen; and a guide rod having an axis line along the predetermined direction, is connected to the spreader, and restricts a moving direction of the spreader, the guide rod has a spreader-side member connected to the spreader and a shaft member connected to the spreader-side member, the spreader-side member and the shaft member are connected by butt welding in the axis line direction, and the spreader-side member and the shaft member have the same shape of cross sections orthogonal to the axis line direction at a butt welding position.

    REACTOR FOR PRODUCING A SYNTHESIS GAS FROM A FUEL

    公开(公告)号:US20210339216A1

    公开(公告)日:2021-11-04

    申请号:US17279635

    申请日:2019-10-01

    摘要: A reactor for producing a synthesis gas from a fuel, with a housing (2) with a combustion part accommodating a first fluidized bed in operation, a riser (3) extending along a longitudinal direction of the reactor (1) and accommodating a second fluidized bed in operation, a down-comer (4) positioned parallel to the riser and extending into the first fluidized bed, and one or more feed channels (33) for providing the fuel to the reactor (1). The reactor (1) further has a riser air chamber section (B) connected to a lower part of the riser (3), the riser air chamber section (B) comprising a cylindrical wall (28) with a plurality of circumferentially located holes (24, 25).