摘要:
Disclosed embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a CVT has a number of spherical planets in contact with an idler. Various idler assemblies can be used to facilitate to improve durability, fatigue life, and efficiency of a CVT. In one embodiment, the idler assembly has two rolling elements having contact surfaces that are angled with respect to a longitudinal axis of the CVT. In some embodiments, a bearing is operably coupled between the first and second rolling elements. The bearing is configured to balance axial force between the first and second rolling elements. In one embodiment, the bearing is a ball bearing. In another embodiment, the bearing is an angular contact bearing. In yet other embodiments, needle roller bearings are employed.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT) having a variator provided with a plurality of tilting spherical planets. In one embodiment, a variator is provided with multiple planet arrays. In another embodiment, a hydraulic system is configured to control the transmission ratio of the IVT. Various inventive idler assemblies and planet-pivot arm assemblies can be used to facilitate adjusting the transmission speed ratio of an IVT. Embodiments of a transmission housing and bell housing are adapted to house components of an IVT and, in some embodiments, to cooperate with other components of the IVT to support operation and/or functionality of the IVT. Various related devices include embodiments of, for example, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, and a rotatable carrier configured to support planet-pivot arm assemblies.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of an IVT. In another embodiment, a control system includes a carrier member configured to have a number of radially offset slots. Various inventive carrier members and carrier drivers can be used to facilitate shifting the ratio of an IVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the carrier members. In one embodiment, the carrier member is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a carrier member is operably coupled to a carrier driver. In some embodiments, the carrier member is configured to couple to a source of rotational power. Among other things, shift control interfaces for an IVT are disclosed.
摘要:
Embodiments are directed to a front end accessory drive (FEAD), subassemblies, and components therefor. Embodiments disclosed cover power modulating devices (PMD) which can be used in a FEAD. In one embodiment, a continuously variable transmission (CVT) is coupled directly to a crankshaft of a prime mover, and the CVT is used to regulate the speed and/or torque delivered to an accessory. A compound drive device includes a motor/generator subassembly cooperating with a CVT subassembly to provide a motor functionality with torque multiplication or division, or alternatively, a generator functionality with torque multiplication or division. In some embodiments, a FEAD includes a PMD having a sun shaft configured to couple to a sun of the PMD and to an electric motor component, such as an electrical armature or an electrical field. In one embodiment, the electrical armature the electrical field are placed concentrically and coaxially and configured to rotate relative to one another in opposite directions.
摘要:
The index table includes a rotary table for setting a workpiece for a machine tool; a rotary table shaft fixedly provided on the rotary table; a driving motor mechanism, which is a driving source; and a planetary roller speed-reduction mechanism having a sun roller, which is a motor output shaft of the driving motor mechanism, a ring fixed to the speed-reduction mechanism, a plurality of planetary rollers arranged at equal angular intervals between the sun roller and the ring in a pressurized state, and a planetary roller harness that fixedly supports a plurality of planetary roller shafts pivotally supporting the planetary rollers in a rotatable manner and is fixedly provided coaxially with the rotary table shaft.
摘要:
A continuously variable transmission includes: (a) at least one external, three-dimensional cam; (b) at least four follower assemblies, each including a planet pulley, a roller shaft, and at least one follower roller, the roller shaft being mounted on the planet pulley, the roller shaft being connected to the follower roller; (c) at least two sun assemblies, each including a sun pulley, at least one sprag clutch, and a differential pulley, the differential pulley being mounted to the sun pulley, the sun pulley driving the sprag clutch; (d) an input assembly including a sun pulley shaft, the sun pulley shaft being connected to the at least two sun pulley assemblies through the respective sprag clutches; and (e) at least one differential mechanism connecting each of the sun pulleys to at least two of the planet pulleys; wherein the cam is external to the follower assemblies.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
摘要:
A horizontal axis wind turbine includes a vertically extending tower 117 having a rotatable long shaft 121. A bottom end of the long shaft drives an electric generator 122 and a top end of the long shaft is connected to a power output gear assembly of a bearing tooth angle drive 120. The power output gear assembly is engaged with a power input gear in the bearing tooth angle drive 120. The power input gear is connected by a drive shaft 86 through a preferably planetary gear drive 119 to blades 106 of a wind turbine to receive power from the wind turbine and to deliver torque to the long shaft 121 to drive the generator 122. The planetary gear teeth preferably have flat surfaces providing contact with related gear teeth.
摘要:
A toothless gear speed reducer, which mainly includes an inclined plane cone drive gear, inclined plane conical driven gears and an inclined plane outer gear case drive ring. The toothless gear speed reducer overcomes the difficult problems existent in conventional speed reducers to decrease dimensions and minimize abrasion, and achieves reducing manufacturing time, thereby providing higher efficiency and saving on manufacturing cost.