Abstract:
A fragmentation warhead is provided, capable of being mounted in a carrier vehicle, the warhead having a longitudinal axis. In at least one example the warhead includes a shell that extends along the longitudinal axis. The shell includes a fixed shell portion and a fragmentation portion, and defines therebetween a cavity for accommodating therein an explosive charge. The fragmentation portion includes at least one set of serially adjacent fragments in correspondingly serially contiguous relationship in the fragmentation portion and in generally helical relationship with respect to the longitudinal axis. A corresponding carrier vehicle and a corresponding missile are also provided.
Abstract:
Disclosed is a Global Positioning System (“GPS”) independent navigation system (“GINS”) for a self-guided aerial vehicle (“SAV”). The SAV has a housing, where the housing has an outer surface, a length, a front-end, and a longitudinal axis along the length of the housing. The GINS includes a first optical sensor, a second optical sensor, a storage unit, and a comparator.
Abstract:
A method of guiding a pursuer to a target is provided, and is of particular use when the possible target location is described by non-Gaussian statistics. Importantly, the method takes into account the fact that different potential target tracks in the future have significantly different times to go. That can give rise to emergent behavior, in which the guidance method covers several possible outcomes at the same time in an optimal way. An example embodiment of the method combines Particle Filter ideas with Swarm Optimization techniques to form a method for generating guidance commands for systems with non-Gaussian statistics. That example method is then applied to a dynamic mission planning example, to guide an airborne pursuer to a ground target travelling on a network of roads where the pursuer has no-go areas, to avoid collateral damage.
Abstract:
A munition guidance system is disclosed. The system comprises a generally tubular enclosure, having an internal cavity adapted for receiving a munition, wherein an outer diameter of the enclosure is at most the largest outer diameter of the munition; and a processing and control unit enclosed within the enclosure and being configured for controlling guidance wings so as to maneuver the munition while flying.
Abstract:
An exo-atmospheric intercepting method for intercepting in space multiple objects, including acquiring and tracking multiple inflated objects which fly towards a protected territory. The method further includes launching an interceptor missile accommodating a plurality of kill vehicles each hosting a plurality of punching objects and classifying the multiple objects into clusters. In respect of each cluster of objects, determining an ejection condition responsive to meeting of which a kill vehicle is ejected from the interceptor missile towards the cluster of objects and thereafter releasing from the kill vehicle a plurality of punching objects such that every inflated object in the cluster is likely, with a high degree of certainty, to be punched by one or more punching objects.
Abstract:
The invention described herein provides an apparatus and a method to cooperatively track and intercept a plurality of highly maneuvering asymmetric threats using networks of small, low-cost, lightweight, airborne vehicles that dynamically self-organize into an ad hoc network topology. This is accomplished using distributed information sharing to maintain cohesion and avoid vehicle collisions, while cooperatively pursuing multiple targets.
Abstract:
A method of mapping a first array to a second array is useful where (1) each of the arrays has pixels in sequential columns and rows and the first array has sequential integers identifying each row of pixels, (2) sequential integers identify each column of pixels, and a numerical value is associated with each pixel, (3) the first and second arrays have (or can be made to have) a one to one pairing between columns of the first and second arrays, and (4) groups of four unique pixels in the same column of the first array are paired one to one with a pixel in the paired column of the second array. The method includes the steps of, for each column in the first array, selecting the values associated with the pixels in four sequential odd numbered rows to form an odd group of four unique pixels, combining the values associated with the pixels in the first three odd numbered rows of the odd group to form an odd combined value, and mapping the odd combined value to the pixel in the column and row of the second array with which the odd group is paired, and thereafter selecting the values associated with the pixels in four even numbered rows to form an even group of four unique pixels, combining the values associated with pixels in the last three rows of the even group to form an even combined value, and mapping the even combined value to the pixel in column and row of the second array with which the even group is paired.
Abstract:
A vehicle guidance system. The system includes a first mechanism for tracking a vehicle based on time-of-arrival information associated with energy emanating from the vehicle and providing vehicle position information in response thereto. A second mechanism steers the vehicle based on the vehicle position information. In a specific embodiment, the system of further includes a third mechanism for locating the target based on time-of-arrival information associated with energy radiating from the target and providing target location information in response thereto. The second the second mechanism steers the vehicle based on the target location information and the vehicle position information.
Abstract:
A video demultiplexing interface (70) is used in a missile tracking system (10) employing a missile (12) with a thermal beacon (24). A target designator (40) defines a boresight from a missile firing location, such as an aircraft, to a target. The closed-loop tracking system (10) employs a forward looking infrared (FLIR) sensor (52) to track the displacement of the thermal beacon (24) from the boresight and generates a correction signal related to such displacement. The video demultiplexing interface (70) transforms serial multiplexed video signals, which are output by the FLIR sensor (52) and contain a field with M rows and L columns of pixels, into a demultiplexed parallel video signal containing N selectable adjacent horizontal rows of pixels (where N is less than M). A video thermal tracker (58) selects the N adjacent horizontal rows of pixels and generates azimuth and elevation error signals which are transmitted to the missile (12). The trajectory of the missile (12) is continuously corrected to align the thermal beacon (24) with the boresight.
Abstract:
A laser tracking system steers a beam of laser energy which is dithered in two directions to scan the surface of a moving object. A laser energy detector detects laser energy reflected from the target. Reflected energy is filtered to distinguish dither frequencies for signals in both directions, which signals are independently analyzed to determine the location of the target in relation to the laser beam. A bias signal is generated which causes the beam of laser energy to be steered toward the target, to the tracked location on-target, or modified signals steer a portion of the beam to an optimum track location on target while offsetting most of the beam's energy to a second engagement location on target. The tracking system advantageously locks onto target features such as those having a high compound curvature on the targeted object. For missile defense, this allows for tracking and engagement of vulnerable features which are found on a missile. Also, a track testing system is capable of monitoring a laser beam focused on a missile and determining the effective laser engagement on a spinning target.