Abstract:
Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
Abstract:
Presented herein are methods and compositions for tagmentation of nucleic acids. The methods are useful for generating tagged DNA fragments that are qualitatively and quantitatively representative of the target nucleic acids in the sample from which they are generated.
Abstract:
A method of nucleic acid sequencing. The method can include the steps of (a) providing a polymerase tethered to a solid support charge sensor; (b) providing one or more nucleotides, whereby the presence of the nucleotide can be detected by the charge sensor; and (c) detecting incorporation of the nucleotide into a nascent strand complementary to a template nucleic acid.
Abstract:
Presented herein are methods and compositions for tagmentation of nucleic acids. The methods are useful for generating tagged DNA fragments that are qualitatively and quantitatively representative of the target nucleic acids in the sample from which they are generated.
Abstract:
Compositions, systems, and methods for detecting events are provided. A composition can include a nanopore including a first side, a second side, and an aperture extending through the first and second sides; and a permanent tether including head and tail regions and an elongated body disposed therebetween. The head region can be anchored to or adjacent to the first or second side of the nanopore. The elongated body including a reporter region can be movable within the aperture responsive to a first event occurring adjacent to the first side of the nanopore. For example, the reporter region is translationally movable toward the first side responsive to the first event, then toward the second side, then toward the first side responsive to a second event. The first event can include adding a first nucleotide to a polynucleotide. The second event can include adding a second nucleotide to the polynucleotide.
Abstract:
Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps by a Hel308 helicase of the target polynucleotide's translocation through a pore.
Abstract:
A composition includes a nanopore including first and second sides and an aperture, nucleotides each including an elongated tag, and a first polynucleotide that is complementary to a second polynucleotide. A polymerase can be disposed adjacent to the first side of the nanopore and configured to add nucleotides to the first polynucleotide based on a sequence of the second polynucleotide. A permanent tether can include a head region anchored to the polymerase, a tail region, and an elongated body disposed therebetween that occurs in the aperture of the nanopore. A first moiety can be disposed on the elongated body that binds to the elongated tag of a first nucleotide upon which the polymerase is acting. A reporter region can be disposed on the elongated body that indicates when the first nucleotide is complementary or is not complementary to a next nucleotide in the sequence of the second polynucleotide.
Abstract:
Embodiments provided herein relate to methods and compositions for next generation sequencing. Some embodiments include the preparation of a template library from a target nucleic acid using one-sided transposition, and sequencing the template library.
Abstract:
Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps of the target polynucleotide's translocation through a pore.