Abstract:
An implantable medical lead includes a lead body, an electrode, a lead electrical connector, and a rotational electrical coupling. The lead electrical connector is configured to establish electrical communication between a test device and the electrode. The rotational electrical coupling includes a first conductive component electrically connected to the electrode and a second conductive component electrically connected to the first conductive component. The second conductive component is configured to establish electrical communication with the test device. The rotational electrical coupling is configured to facilitate rotation of the first conductive component relative to the second conductive component.
Abstract:
A pacemaker has a housing and a therapy delivery circuit enclosed by the housing for generating pacing pulses for delivery to a patient's heart. An electrically insulative distal member is coupled directly to the housing and at least one non-tissue piercing cathode electrode is coupled directly to the insulative distal member. A tissue piercing electrode extends away from the housing.
Abstract:
In some examples, a system includes a catheter comprising an elongated shaft defining a lumen, and a tether assembly. The tether assembly may include an elongate body, a tether head assembly attached to a distal end of the elongate body, where the tether head assembly includes an attachment mechanism configured to releasably attach to an attachment member of a medical device, and a positioning element fixedly positioned over the elongate body and configured to align the attachment mechanism with the attachment member when the tether head assembly is extended distally out of the lumen. The positioning element may include a distal end, a proximal end, and a length between the distal end and proximal end that is less than a length of the elongate body. The tether head assembly, elongate body, and positioning element may be movable within the lumen of the elongated shaft.
Abstract:
An implantable medical device (IMD) including an elongated housing and a tine housing configured to attach to the elongated housing. The tine housing may support an extending plurality of tines and a distal-most electrode. An inner chamber is bounded at least in part by the elongated housing and the tine housing with an adhesive fill port in fluid communication with the inner chamber. A method of assembling the IMD includes forming the inner chamber and substantially filling the inner chamber with an adhesive through the adhesive fill port. The method may include curing the filling adhesive.
Abstract:
An assembly for tethering a medical device to a delivery catheter includes a tether, a collet, and a spring-biased holding element that is coupled to a distal end of the tether and that extends around the collet, being moveable between first and second positions. At the first positon, corresponding to the spring bias thereof, the holding element prevents fingers of the collet, which are configured to grip a proximal end of the device, from opening; at the second position, the collet fingers are allowed and/or caused to open. The assembly is coupled to a tubular member of the catheter, and, when the tethering assembly abuts a distal end of the catheter tubular member, a pull force applied to a proximal end the tether, which extends out from a proximal opening of the catheter, moves the holding element from the first position to the second position.
Abstract:
An adapter configured to electrically connect a test device to an implantable medical lead comprises a rotational electrical coupling. The rotational electrical coupling is configured to electrically connect a lead electrical connector to an adapter electrical connector. The rotational electrical coupling comprises a first conductive component configured to be electrically connected to the lead electrical connector and rotatable with a proximal portion of the implantable medical lead, and a second conductive component electrically connected to the first conductive component and the adapter electrical connector. The second conductive component may be rotationally fixed. The first and second conductive components may comprise graphite or another soft metal.
Abstract:
A fixation mechanism of an implantable medical device is formed by a plurality of tines fixedly mounted around a perimeter of a distal end of the device. Each tine may be said to include a first segment fixedly attached to the device, a second segment extending from the first segment, and a third segment, to which the second segment extends. When the device is loaded in a lumen of a delivery tool and a rounded free distal end of each tine engages a sidewall that defines the lumen, to hold the tines in a spring-loaded condition, the first segment of each tine, which has a spring-biased pre-formed curvature, becomes relatively straightened, and the third segment of each tine, which is terminated by the free distal end, extends away from the axis of the device at an acute angle.
Abstract:
A fixation mechanism of an implantable medical device is formed by a plurality of tines fixedly mounted around a perimeter of a distal end of the device. Each tine may be said to include a first segment fixedly attached to the device, a second segment extending from the first segment, and a third segment, to which the second segment extends. When the device is loaded in a lumen of a delivery tool and a rounded free distal end of each tine engages a sidewall that defines the lumen, to hold the tines in a spring-loaded condition, the first segment of each tine, which has a spring-biased pre-formed curvature, becomes relatively straightened, and the third segment of each tine, which is terminated by the free distal end, extends away from the axis of the device at an acute angle.
Abstract:
An implantable pacemaker system includes a housing having a proximal end and a distal end. A control electronics subassembly defines the housing proximal end, and a battery subassembly defines the housing distal end. A distal fixation member extends from the housing distal end for fixing the housing distal end at an implant site. A pacing extension extends from the housing proximal end and carries a pacing cathode electrode. The pacing extension extends the pacing cathode electrode to a pacing site that is spaced apart from the implant site when the pacemaker is deployed in a patient's body.
Abstract:
An interatrial shunting device (20) including a tube (30) and an anchoring assembly (32). The tube defines a first end opposite a second end, and a tube wall (46) extending to and between the first and second ends. The tube wall is a solid body and defines a lumen of the tube, with the lumen being open at the first and second ends. The anchoring assembly is carried by the tube and is configured to secure the interatrial shunting device to a native atrial septum. The solid wall tube prevents tissue overgrowth across the atrial septum, and can have minimal exposure of the device in the left atrium to minimize stroke and other risks. In some examples, the anchoring assembly is configured to be self-transitionable from a delivery state to a deployed state.