Abstract:
In some examples, a battery assembly for an implantable medical device may include an electrode stack comprising a plurality of electrode plates. The plurality of electrode plates may comprise a first electrode plate including a first tab extending from the first electrode plate and a second electrode plate including a second tab extending from the second electrode plate, an alignment member extending through the first tab and the second tab, and a weld on a side of the electrode stack extending from the first tab to the second tab, wherein the weld penetrates into the alignment member.
Abstract:
A battery assembly for an implantable medical device is disclosed. The battery assembly includes an electrode stack comprising a plurality of electrode plates, wherein the plurality of electrode plates comprises a first electrode plate including a first tab extending from the first electrode plate and a second electrode plate including a second tab extending from the second electrode plate; a spacer between the first tab and the second tab; and a rivet extending through the first tab, second tab, and spacer, wherein the rivet is configured to mechanically attach the first tab, second tab, and spacer to each other.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be affixed to a ferrite sheet formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the ferrite sheet and the receive coil or coils may be positioned adjacent to some portion of the curved inner surface with the ferrite sheet positioned between the inner surface and the receive coil or coils.
Abstract:
A modified polyisobutylene-based polymer, method of making, and a medical device that includes such polymer, wherein the modified polyisobutylene-based polymer includes urethane, urea, or urethane-urea groups, hard segments, and soft segments, wherein the soft segments comprise phenoxy-containing polyisobutylene residues, and the hard segments include diisocyanate residues and optionally chain extender residues.
Abstract:
Medical device systems include processing circuitry configured to acquire sensed cardiac signals associated with cardiac activity of a heart of a patient, and to analyze the sensed cardiac signals to determine if a noise signal is present within the cardiac signals.
Abstract:
In some examples, a feedthrough assembly a ferrule including a base portion and at least one projection extending from the base portion; a capacitive filter positioned adjacent the base portion of the ferrule such that an outer wall of the capacitive filter faces an inner wall of the at least one projection of the ferrule; a conductive pin extending through an aperture in the ferrule and an aperture in the capacitive filter; and an electrically conductive material between the inner wall of the at least one projection of the ferrule and outer wall of the capacitive filter that electrically couples the ferrule and the capacitive filter to ground the capacitive filter, wherein the inner wall of the at least one projection of the ferrule and the outer wall of the capacitive filter are tapered.
Abstract:
In some examples, an implantable medical device (IMD) comprises an electrochemical cell compartment that may define a barrier between an inside of the compartment and an outside of the compartment. The IMD may include an electrically conducting pad. The IMD may comprise an electrically conducting pin coupled to the pad. The pad may include top and bottom sides. The pin may extend from the bottom side of the pad. The pad may be positioned outside of the compartment and the pin may extend through an aperture in the compartment from inside the compartment to pad positioned outside of the electrochemical cell compartment. The IMD may include an electrically insulating material surrounding the aperture and between the bottom side of the pad and the compartment. The insulating material may insulate the pad from the barrier and form a seal between the inside of the compartment and the outside of the compartment.
Abstract:
A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
Abstract:
A high contrast instrument, such as a radiopaque portion, can be captured and/or viewed in an image that is acquired with an imaging system, such as with a fluoroscopic imaging system. A statistical model can be used to assist in identifying a possible or probable location of a target. A user may move the instrument coil to the statistically probable location of the target to, for example, perform a procedure or carry out a task.
Abstract:
A method of generating at least one recommended replacement time signal for a battery is provided. The method includes measuring a plurality of associated unloaded and loaded battery voltages. A delta voltage for each associated unloaded and loaded battery voltage is then determined. A select number of delta voltages are averaged. A minimum delta voltage is determined from a plurality of the averaged delta voltages. At least one recommended replacement time signal for the battery is generated with the use of the minimum delta voltage when at least one averaged delta voltage is detected that has at least reached a replacement threshold.