Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device (IMD) while the device is implanted in a patient. The IMD may include a rechargeable battery having a battery housing; a non-metallic substrate attached to the battery housing, wherein the non-metallic substrate and the battery housing form an outer housing of the implantable medical device; control circuitry formed on the non-metallic substrate within the outer housing of the IMD; a receive coil within the outer housing of the IMD, the receive coil configured to receive energy from outside of the outer housing of the IMD; and recharge circuitry within the outer housing of the IMD and coupled to the receive coil, the recharge circuitry configured to receive the energy from the receive coil, and recharge the rechargeable battery using the received energy.
Abstract:
A capacitive element for an implantable medical device feedthrough element includes a bore, to receive a feedthrough member, or pin of the filtered feedthrough element, an external surface extending laterally outward from a first opening of the bore, and a recessed area formed in the external surface and extending about an outer perimeter thereof. The recessed area may provide a location on which to apply a conductive material to form a joint that electrically couples the capacitive element to a ferrule of the filtered feedthrough element.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be affixed to a ferrite sheet formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the ferrite sheet and the receive coil or coils may be positioned adjacent to some portion of the curved inner surface with the ferrite sheet positioned between the inner surface and the receive coil or coils.
Abstract:
In one example, a capacitor structure may include a capacitor comprising a surface that defines at least one feedthrough aperture and a ceramic insulator layer attached to the surface. The surface of the capacitor may include a capacitor registration feature, and the ceramic insulator layer may include a ceramic insulator layer registration feature. The capacitor registration feature and the ceramic insulator layer registration feature may cooperate to substantially align the ceramic insulator layer to the capacitor, e.g., prior to the ceramic layer being attached to surface of the capacitor.
Abstract:
An electronic module assembly (EMA) for an implantable medical device is disclosed. The EMA comprises a non-conductive block having a top side, a bottom side, a front side and a back side. A plurality of conductive strips are coupled to the non-conductive block. Each conductive strip possesses a front side and a back side. The back side of each conductive strip is directly connected or embedded into the surfaces of the front side, the top side and the back side of the non-conductive block.
Abstract:
An implantable medical device is provided including a housing, an external circuit element extending outwardly from the housing, an internal circuit enclosed by the housing, a feedthrough array disposed along the housing having at least one filtered feedthrough and at least one unfiltered feedthrough, wherein the unfiltered feedthrough is adapted for connection to the outwardly extending circuit element; and including means for minimizing electromagnetic coupling between the filtered feedthrough and the unfiltered feedthrough.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable devices in some examples include a multi-axis antenna having a plurality of coil windings arranged orthogonal to one another. The multi-axis antenna configured to generate at least a minimum level of induced current for recharging a power source of the implanted medical device regardless of the orientation of a direction of a magnetic field imposed on the multi-axis antenna relative to an orientation of the implanted medical device and the multi-axis antenna for a given energy level of the imposed magnetic field.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The recharging system/device in some examples includes a first electrical coil and a second electrical coil configured to generate opposing magnetic fields forming a resultant magnetic field within a recharging envelope located between the coils. A third coil of the implantable medical device may be positioned within the recharging envelope so that the resultant magnetic field is imposed on the third coil, causing electrical energy to be induced in the third coil, the induced electrical energy used to recharge a power source of an implantable medical device coupled to the third coil, and/or to power operation of the implantable medical device.
Abstract:
Medical devices include fixation structures that include retained portions that provide medical lead fixation within the medical devices. Lead extensions include fixation structures that include retained portions that provide medical lead fixation within the lead extensions. A grip that a clinician may grasp and manipulate is engaged with a nose structure of a header block of the medical device or a connector block of a lead extension and manipulation of the grip causes compression of a deformable structure to ultimately create fixation of the lead or lead extension within the header block or the lead within the extension connector block. The deformable structure may be the retained portion of the fixation structure or alternatively may be separate from the fixation structure.
Abstract:
Implantable medical devices include connector enclosure assemblies that utilize conductors electrically coupled to feedthrough pins that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.