Abstract:
A multi-beamlet charged particle beamlet lithography system for transferring a pattern to a surface of a substrate. The system comprises a projection system for projecting a plurality of charged particle beamlets onto the surface of the substrate; a chuck moveable with respect to the projection system; a beamlet measurement sensor for determining one or more characteristics of one or more of the charged particle beamlets, the beamlet measurement sensor having a surface for receiving one or more of the charged particle beamlets; and a position mark measurement system for measuring a position of a position mark, the position mark measurement system comprising an alignment sensor. The chuck comprises a substrate support portion for supporting the substrate, a beamlet measurement sensor portion for accommodating the surface of the beamlet measurement sensor, and a position mark portion for accommodating the position mark.
Abstract:
An arrangement for generating plasma, the arrangement comprising a primary plasma source (1) arranged for generating plasma, a hollow guiding body (11) arranged for guiding at least a portion of the plasma generated by the primary plasma source to a secondary plasma source (25), and an outlet (14) for emitting at least a portion of the atomic radicals produced by the plasma from the arrangement.
Abstract:
An arrangement for generating plasma, the arrangement comprising a primary plasma source (1) comprising a primary source chamber (15) and a first coil (4) for generating plasma in the primary source chamber, a secondary plasma source (25) comprising a secondary source chamber (16) and a second coil (26) for enhancing plasma generated by the primary plasma source and/or generating plasma in the secondary source chamber generating plasma in the primary source chamber, a hollow guiding body (11) arranged for guiding at least a portion of the plasma generated by the primary plasma source to the secondary plasma source, and an outlet (14) for emitting at least a portion of the plasma generated by the arrangement.
Abstract:
A lithography system (10) comprising a radiation projection system (20) for projecting radiation onto a substrate, a substrate transport system (30) for loading and positioning the substrate to be processed in the path of the projected radiation, a control system (40) for controlling the substrate transport system to move the substrate, and a resist characterization system (50) arranged for determining whether a specific type of resist is suitable to be exposed by radiation within the lithography system. The resist characterization system (50) may be arranged for exposing the resist on a surface of the substrate with one or more radiation beams, measuring a mass distribution of molecular fragments emitted from the resist, predicting a growth rate of deposited molecular fragments on the basis of a growth rate model and the measured mass distribution, and comparing the expected growth rate with a predetermined threshold growth rate.
Abstract:
A measurement system for measuring an input electrical current (Ics) from a current source (CS) and generating a current measurement signal, comprising a current measuring circuit (70) having a first input terminal (72) connected to the current source and an output terminal (74) for providing the current measurement signal. The current measuring circuit further comprises one or more power supply terminals (75, 76) arranged to receive one or more voltages from a power supply (77a, 77b) for powering the current measuring circuit. The current measuring circuit also comprises a first voltage source (VD) coupled to the one or more power supply terminals, the first voltage source providing a disturbance voltage to the one or more power supply terminals, the disturbance voltage representing a voltage at the first input terminal.
Abstract:
A capacitive measurement system for generating a measurement signal representative of a measured position or distance to a target. The system has a first circuit comprising a thin film capacitive sensor (1a) arranged for providing a sensor capacitance in dependence on the measured position or distance; a cable (30a) comprising a sensor wire (31a) and a co-axial shield conductor (32a), the cable having a remote end and a local end, the sensor wire electrically connected to the capacitive sensor at the local end of the cable; a voltage source (24a) having an output terminal connected to the sensor wire at the remote end of the cable and arranged to energize the capacitive sensor, and energize the shield conductor with essentially the same voltage as the sensor wire; and a current measuring circuit (21a) having first and second input terminals and an output terminal, the current measuring circuit connected in series with the first input terminal connected to the output terminal of the voltage source and the second input terminal connected to the sensor wire at the remote end of the cable, the current measuring circuit arranged to measure current flowing in the sensor wire and generate the measurement signal at the output terminal.
Abstract:
A clustered substrate processing system comprising one or more lithography elements, each lithography element arranged for independent exposure of substrates according to pattern data. Each lithography element comprises a plurality of lithography subsystems, a control network arranged for communication of control information between the lithography subsystems and at least one element control unit, the element control unit arranged to transmit commands to the lithography subsystems and the lithography subsystems arranged to transmit responses to the element control unit. Each lithography element also comprises a cluster front-end for interface to an operator or host system, the front-end arranged for issuing control information to the at least one element control unit to control operation of the one or more lithography subsystems for exposure of one or more wafers. The front-end is arranged for issuing a process program to the element control unit, the process program comprising a set of predefined commands and associated parameters, each command corresponding to a predefined action or sequence of actions to be performed by one or more of the lithography subsystems, and the parameters further defining how the action or sequence of actions are to be performed.
Abstract:
A charged particle lithography system for transferring a pattern onto the surface of a target, comprising a main vacuum chamber, a source chamber and an intermediate chamber, both located in the main vacuum chamber, a beam generator for generating a charged particle beam, the beam generator located in the source chamber, and a first aperture array element for generating a plurality of charged particle beamlets from the beam, the first aperture array element located in the intermediate chamber. The system is adapted for maintaining a first pressure in the main vacuum chamber, a second pressure in the intermediate chamber, and a third pressure in the source chamber, and wherein the first pressure is lower than an ambient pressure, the second pressure is lower than the first pressure, and the third pressure is lower than the second pressure.
Abstract:
The invention relates to a transportation unit for transport of foodstuffs that are highly viscous or solid at ambient temperatures. The transportation unit comprises a first bag, a second bag arranged to fit into the first bag, and one or more hoist bands wrapped around the bottom side of the first bag and connected thereto. The first bag has an upper side and a bottom side, and is made from a woven fabric, preferably a woven polymer. Additionally, the first bag comprises a transfer opening for removing the foodstuffs from the transportation unit. The second bag comprises an opening for inserting and/or removing the foodstuffs. The second bag is capable of transporting more than 2000 kg of foodstuffs. The one or more hoist bands form loops above the upper side of the first bag.
Abstract:
The invention relates to a method of cleaning one or more air filter elements (100) with a cleaning arrangement (1) comprising a rotatable basket (20) for holding the one or more air filters, a spraying device (30) for spraying cleaning fluid into the basket, and a driving unit (40) for driving the basket into rotational motion. The method comprises placing the one or more air filter elements in the basket, and performing at least three cleaning cycles. A cleaning cycle comprises the following steps. First the rotation of the basket is driven up to a rotational speed at which the one or more air filter elements have a speed greater than about 15 m/s, preferably greater than about 20 m/s. Then the rotation of the basket is brought back to a rotational speed at which the one or more air filter elements have a speed below about 2 m/s. In addition, the cleaning cycle comprises spraying cleaning fluid into the basket during at least a portion of the cycle.