Abstract:
A process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) adsorbing hydrogen on the catalyst during cracking; and (c) producing a cracked product, preferably propylene, wherein the catalyst comprises (i) a matrix, (ii) a catalytically active material, and (iii) a hydrogen adsorption material. Another process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) contacting the hydrocarbon feed with a hydrogen adsorption material; (c) adsorbing hydrogen on the hydrogen adsorption material during cracking; and (d) producing a cracked product, wherein the catalyst comprises (i) a matrix and (ii) a catalytically active material.
Abstract:
A coal tar process is described. A coal tar stream is provided, and the coal tar stream is separated to provide a plurality of hydrocarbon streams. At least one of the hydrocarbon streams is hydroprocessed in a fluidized bed hydroprocessing zone with a catalyst to provide a gaseous volatile product and a solid heavy hydrocarbon product absorbed onto the catalyst. The gaseous volatile product is separated from the catalyst. The catalyst is regenerating by separating the absorbed heavy hydrocarbon product from the catalyst. The regenerated catalyst is recycled into the hydroprocessing zone.
Abstract:
A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is fractionated into at least a light naphtha range hydrocarbon stream having a boiling point in the range of 85C (185F) to 137.8C (280F). The light naphtha range hydrocarbon stream is hydrotreated by contacting the light naphtha range hydrocarbon stream with a naphtha hydrotreating catalyst
Abstract:
A multifunction hydrotreater includes a particulate removal zone having a particulate trap to remove particulate contaminants from a coal tar stream and a demetallizing zone including a demetallizing catalyst to remove organically bound metals from the de-particulated stream. The demetallizing zone is positioned after the particulate removal zone. The hydrotreater also includes a hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation zone positioned after the demetallization zone, which includes at least one hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation catalyst to provide a hydrotreated coal tar stream.
Abstract:
A riser includes a housing in communication with a entry conduit and an exit conduit. The housing is defined by a holdup chamber having a volume of between 1133 liters and 45307 liters. The riser is designed to receive a hydrocarbon feed and a catalyst. An apparatus for fluid catalytic cracking includes a riser in fluid communication with a reactor vessel. A hydrocarbon feed stream and a catalyst travel through a first section of the riser at a first velocity of between 1.5 m/sec to 10 m/sec and through a second section of the riser at a second velocity of more than 15 m/sec. A process for fluid catalytic cracking uses a riser with a holdup chamber. A hydrocarbon feed and a catalyst decrease in velocity in the holdup chamber to between 1.5 m/sec and 10 m/sec.
Abstract:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
Abstract:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
Abstract:
An alkylation process system uses an ionic liquid as a catalyst which undergoes an interruption in normal operating condition. A method of maintaining the alkylation process system during the interruption of the normal operating condition requires maintaining a circulation of the ionic liquid through the alkylation process system without interruption.
Abstract:
A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C 6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C 3 hydrocarbons and C 4 hydrocarbons. Also, a higher ring opening conversion of C 5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C 6 cyclic hydrocarbons passed into the isomerization zone.
Abstract:
Methods and apparatuses for processing hydrocarbons are provided. In one embodiment, a method for processing hydrocarbons includes fractionating a feed stock to form a C6-C10 naphtha stream and a C11 + hydrocarbon stream. The method reforms the C6-C10 naphtha stream. Further, the method cracks the C11 + hydrocarbon stream to form a stream of C6-C10 hydrocarbons and extracts aromatics from the stream of C6-C10 hydrocarbons to form an extract stream. The method includes combining the C6-C10 naphtha stream and the extract stream containing the aromatics. Also, the method includes processing the C6-C10 naphtha stream and the extract stream in an aromatics complex to form selected aromatic products. Further, the embodiment may include reforming raffinate streams.