Abstract:
A process for increasing a yield of an isomerization zone by removing at least a portion of the C 6 cyclic hydrocarbons from a stream having iC 4 hydrocarbons, iC 5 hydrocarbons, and iC 6 hydrocarbons prior to the stream being passed into the same isomerization zone. Suppression of the iC 4 hydrocarbons does not occur, allowing the iC 4 hydrocarbons to be isomerized in the same isomerization zone as the iC 5 hydrocarbons and iC 6 hydrocarbons.
Abstract:
A process for increasing a yield of an isomerization zone by removing at least a portion of the C 6 cyclic hydrocarbons from a stream prior to it being passed into the isomerization zone. Additionally, disproportionation reactions occur producing valuable C 3 hydrocarbons and C 4 hydrocarbons. Also, a higher ring opening conversion of C 5 cyclic hydrocarbons is observed.
Abstract:
A process for gasifying and pyrolyzing coal is described. A first coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. A second coal feed is gasified in a gasification zone to produce an effluent stream. Contaminants are removed from the effluent stream to provide a purified effluent stream. The purified effluent stream is introduced to the pyrolysis zone.
Abstract:
A process removing ionic liquid from a process stream is described. The process stream is introduced into a coalescer to form an ionic liquid stream and a first treated process stream which has less ionic liquid than the process stream. The first treated process stream is introduced into a separator to form a second treated process stream. The second treated process stream has less ionic liquid than the first treated process stream. The separator is selected from a filtration zone comprising sand or carbon, an adsorption zone, a scrubbing zone, an electrostatic separation zone, or combinations thereof.
Abstract:
A process for removing ash and heavy hydrocarbon compounds from coal is described. The coal feed, the coal tar stream, or a coal tar fraction is contacted with a solvent to dissolve a soluble portion of the coal tar stream, the ash and heavy hydrocarbons being insoluble in the solvent, the solvent selected from the group consisting of dimethyl sulfoxide, sulfolane, dimethyl formamide, glyme, diglyme, ionic liquids, and combinations thereof, with the proviso that an anion of the ionic liquid is not a dialkylphosphate.
Abstract:
A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream.
Abstract:
A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of 60°C to 180°C, and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream.
Abstract:
A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream.
Abstract:
A process for producing olefins from a coal feed includes providing a coal tar stream and fractionating the coal tar stream to provide a hydrocarbon stream that includes hydrocarbons having an initial boiling point of 250C or greater. The hydrocarbon stream is hydrotreated to reduce a concentration of one or more of nitrogen, sulfur, and oxygen in the hydrocarbon stream, and the hydrotreated hydrocarbon stream is cracked in a fluidized catalytic cracking zone to produce an olefin stream.
Abstract:
A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms.