Abstract:
Methods and apparatus for positioning a magnetic field sensor IC package having a first channel for a planar magnetic field sensing element and a second channel for vertical magnetic field sensing element in relation to an axis of a ring magnet to provide a desired phase relationship between the first and second channels. In embodiments, positioning the sensor includes an offset angle and a displacement with respect to a centerline of the ring magnet.
Abstract:
A magnetic field sensor for detecting motion of an object includes error detection circuitry and processing. Magnetic field sensing elements are configured to generate at least two magnetic field signals in response to a magnetic field associated with the object which signals are used by detectors to generate right and left channel signals with edges indicative of motion of the object. A direction calculation processor responsive to right and left channel signals generates a direction signal having a state indicative of a direction of motion of the object and an output signal generator generates an output signal having a pulse indicative of the direction of motion of the object in response to the direction signal. In particular, output pulses indicating motion are produced with different length according to the direction of rotation. An error detection processor responsive to the output signal and to the direction signal is configured to detect an error in at least one of the direction signal and the output signal. In particular, it can be checked whether the edges of the output signal occur at the same time as the edges of one input signal and whether the duration of the pulses corresponds to one of the predetermined durations.
Abstract:
A magnetic field sensor and an associated method use one or more magnetoresistance elements ( 1302, 1304, 1306, 1308) driven with an AC mixing current (1312, 1316) and experiencing an AC mixing magnetic field which have AC components of the same frequency (fmod), such as to generate a DC voltage signal (1334a, 1334b) or a DC voltage signal component related to a slope of a transfer curve of the one or more magnetoresistance elements, wherein the mixing takes place in the magnetoresistance element(s) and results in changes of the value of the DC component in response to changes of the sensed external magnetic field.
Abstract:
A magnetic field sensor includes a phase-locked loop to receive a measured magnetic field signal formed from sensing element output signals of a plurality of magnetic field sensing elements in response to a magnetic field. The phase-locked loop is configured to generate an angle signal having a value indicative of the angle of the magnetic field. Associated methods are also described.
Abstract:
An integrated magnetic field sensor includes a magnetic field sensing circuit and a power driving circuit disposed upon or within a common substrate. A method of powering on and off a load uses the above integrated magnetic field sensor.
Abstract:
Electronic circuits used in magnetic field sensors use transistors for passing a current through the transistors and also through a magnetoresistance element.
Abstract:
A magnetic field sensor for detecting motion of an object includes error detection circuiting and processing. Magnetic field sensing elements are configured to generate at least two magnetic field signals in response to a magnetic field associated with the object which signals are used by detectors to generate right and left channel signals with edges indicative of motion of the object. A direction calculation processor responsive to right and left channel signals generates a direction signal having a state indicative of a direction of motion of the object and an output signal generator generates an output signal having a pulse indicative of the direction of motion of the object in response to the direction signal. An error detection processor responsive to the output signal and to the direction signal is configured to detect an error in at least one of the direction signal and the output signal.
Abstract:
Methods and apparatus to provide an integrated circuit having a magnetic sensing element having differential first and second outputs and an input, the input to receive current and first and second switches coupled to a respective one of the differential first and second outputs. A first voltage source is coupled between the first and second switches, the first and second switches having a first state in which the first voltage source is coupled across the differential first and second outputs, and an IC output can output a voltage corresponding to the first voltage source when the first and second switches are in the first state for monitoring operation of a signal path from the magnetic sensing element to the IC output.
Abstract:
Systems and techniques detecting a reverse current are disclosed. An apparatus comprises a switching circuit coupled to a load and a reference node. The switching circuit may be capable of conducting a reverse current from the reference node to the load when a voltage at the load is lower than a voltage at the reference node. A voltage source has a first terminal coupled to the load, a second terminal configured to follow a voltage at the load, and produces a voltage proportional to a voltage drop across the switching circuit. A comparator circuit is coupled to compare a voltage at the second terminal of the voltage source to the voltage at the reference node and configured to indicate when the reverse current has a magnitude greater than a predetermined threshold.
Abstract:
A magnetic field sensor uses upper and lower thresholds. The upper and lower thresholds are limited such that they have a minimum separation distance between equivalent voltage levels of the upper and lower thresholds.