Abstract:
Apparatus and method for producing metal-coated optical fiber is provided. One step of such a method comprises providing a length of optical fiber having a glass fiber with or without a carbon layer surrounded by a polymeric, thermoplastic resin or wax coating. The optical fiber is passed through a series of solution baths such that the fiber will contact the solution in each bath for a predetermined dwell time, the series of solution baths or thermal tooling effecting removal of the polymer, thermoplastic resin or wax coating and subsequent electroless plating of metal on the glass fiber. The optical fiber is collected after metal plating so that a selected quantity of said metal-coated optical fiber is gathered. At least one of the solution baths comprises a coiled tube containing the process solution through which the glass fiber passes. Aspects of the present invention are also applicable to conventional metal wire where it is desirable to reduce physical length of the process line.
Abstract:
An adhesive application device for applying an adhesive to a material which is moved along a transport direction x, comprising a nozzle unit with a number of nozzles for applying the adhesive to the material, is to be capable in a very simple way of processing adhesive patterns of different size particularly flexibly and efficiently. To this end, the nozzle unit is arranged such that it can be displaced along a first guiding axis transversely with respect to the transport direction x.
Abstract:
A first method comprises: dissolving a polymer in a terpene, terpenoid, or aromatic solvent to form a polymer solution; dissolving a salt in a polar organic solvent to form a salt solution; and mixing the salt solution and the polymer solution to form a mixture. The salt and the polar organic solvent do not cause substantial precipitation of the polymer upon mixing with the polymer solution. A resulting terpene, terpenoid, or aromatic solvent phase of the mixture is suitable for forming fibers by electric-field-driven spinning from one or more spinning tips onto a target substrate. A composition comprises the terpene, terpenoid, or aromatic solvent phase of the mixture resulting from the method. A second method comprises forming fibers by electric-field-driven spinning of the first composition from one or more spinning tips onto a target substrate. A second composition comprises the fibers formed by the second method.
Abstract:
A first method comprises: dissolving a polymer in a terpene, terpenoid, or aromatic solvent to form a polymer solution; dissolving a salt in a polar organic solvent to form a salt solution; and mixing the salt solution and the polymer solution to form a mixture. The salt and the polar organic solvent do not cause substantial precipitation of the polymer upon mixing with the polymer solution. A resulting terpene, terpenoid, or aromatic solvent phase of the mixture is suitable for forming fibers by electric-field-driven spinning from one or more spinning tips onto a target substrate. A composition comprises the terpene, terpenoid, or aromatic solvent phase of the mixture resulting from the method. A second method comprises forming fibers by electric-field-driven spinning of the first composition from one or more spinning tips onto a target substrate. A second composition comprises the fibers formed by the second method.
Abstract:
A system is provided for high volume print-forming of structures made up of multiple separate layers. A support bed is provided which has multiple steps arrayed thereon at different heights. Substrate blocks rest upon each of the steps. A printing process is utilized to print material from which the structures are to be formed down onto the substrate blocks. This printing process prints different layers onto each of the substrate blocks. The substrate blocks then move to a different step on the support bed and the printing process is repeated. Each support block has a partial structure thereon which receives its next successive layer in each printing cycle until the partial structure becomes a completed structure by having each of its layers sequentially printed thereon. Subsystems are provided for moving the substrate blocks upon the support bed and for properly holding and aligning substrate blocks upon the support bed.