Abstract:
A turbine exhaust diffuser (12) for a gas turbine engine having a turbine section, the exhaust diffuser (12) includes a flowpath (14) downstream of the turbine section. The flowpath (14) is defined at least in part by a turbine casing (16) having an inner casing (18) forming an ID flowpath boundary (20) and an outer casing (22) forming an OD flowpath boundary (24). A least one strut (26) is positioned within the flowpath (14) and spans between the inner casing (18) and the outer casing (22). The exhaust diffuser (12) includes an undulating portion (32) located along at least one of the inner casing (18) and the outer casing (22) along the exhaust diffuser (12). The undulating portion (32) includes at least a first point (34) upstream of the at least one strut (26) and a second point (36) approximate to a halfway span of the at least one strut (26). The undulating portion (32) includes radially and axially extending crests (42) and troughs (44).
Abstract:
A squealer tip (30) for a turbine blade (1) includes a tip cap (32) disposed over an airfoil outer wall (12), a pressure side tip wall (34) extending radially from the tip cap (32) and aligned with an outer surface (14a) of an airfoil pressure sidewall (14), and a suction side tip wall (36) extending radially from the tip cap (32) and aligned with an outer surface (16a) of an airfoil suction sidewall (16). The tip cap (32), the pressure side tip wall (34) and the suction side tip wall (36) define a tip cavity (35). Contiguous surfaces (34b, 32b, 36b) of the pressure side tip wall (34), the tip cap (32), and the suction side tip wall (36) form a continuous, concave surface defining the tip cavity (35).
Abstract:
L'invention concerne un aubage (10) de distributeur présentant; une aube (12) comprenant une paroi d'intrados (16) et une paroi d'extrados (14), et un insert (20) logé dans l'aube (12) et comprenant; une paroi fermée (22) présentant une peau externe (24) s'étendant en regard des parois d'intrados (14) et d'extrados (16), la peau externe (24) et la paroi de l'aube (12) en regard étant séparées par un entrefer (30), et une série de renfoncements (25) formés dans la paroi fermée (22) et débouchant dans la peau externe (24), et une série d'orifices traversants, formés dans les renfoncements (25), les hauteurs d'impact (h) entre lesdits orifices traversants et la paroi d'intrados (16) ou d'extrados (14) en regard étant plus grande que l'entrefer (30).
Abstract:
A gas turbine engine component includes an outer diameter endwall, an inner diameter endwall spaced radially inward of the outer diameter endwall, and at least one body supported between the outer and inner endwalls for rotation about an axis. The body includes an outer diameter surface spaced from the outer diameter endwall by a first gap and an inner diameter surface spaced from the inner diameter endwall by a second gap. The outer and inner diameter surfaces and the outer and inner diameter endwalls are configured such that the first and second gaps remain generally constant in size as the body rotates about the axis.
Abstract:
A turbine airfoil (10) usable in a turbine engine and having at least one cooling system (14) with an efficient trip strip (16) is disclosed. At least a portion of the cooling system (14) may include one or more cooling channels (18) having one or more trip strips (16) protruding from an inner surface (20) forming the cooling channel (18). The trip strip (16) may have improved operating characteristics including enhanced heat transfer capabilities and a substantial reduction in pressure drop typically associated with conventional trip strips (16). In at least one embodiment, the trip strip (16) may have a cross-sectional area with a first section (24) of an upstream surface (26) of the trip strip (16) being positioned nonparallel and nonorthogonal to a surface (20) forming the cooling system channel (18) extending upstream from the at least one trip strip (16) and a concave shaped downstream surface (28) of the at least one trip strip (16) that enables separated flow to reattach to the cooling fluid flow.
Abstract:
A turbofan engine includes a fan section with a plurality of fan blades rotatable about an engine axis generating an airflow, a bypass passage through which the airflow passes, and a fan exit guide vane. The fan exit guide vane assembly includes a plurality of airfoils disposed between an inner platform wall and an outer platform wall. At least one of the inner platform wall and the outer platform wall includes a contoured surface between adjacent airfoils. The contoured surface includes at least one concave region and at least one convex region. A method of reducing secondary flow structures in bypass air flow with the turbofan is also disclosed.
Abstract:
A gas turbine engine includes an aerodynamic track fairing adjacent to a convergent- divergent nozzle, the aerodynamic track fairing including a localized curvature along an outside edge. The aerodynamic track fairing is configured to offset a circumferential pressure gradient otherwise introduced in part by a transition between the convergent-divergent nozzle with the aerodynamic track fairing.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a first wall, a second wall and at least one row of shaped pedestals extending between the first wall and the second wall. The at least one row of shaped pedestals includes a first set of C-shaped pedestals and a second set of C-shaped pedestals adjacent to the first set of C-shaped pedestals.
Abstract:
Turbine component with an interior coating surface comprising multi- scale turbulation features, including first turbulators (46, 48) formed on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) formed on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An arrangement with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
Abstract:
Leitschaufel einer Strömungsmaschine, insbesondere eines Verdichters, wobei ein innendeckbandloses Schaufelblatt (10) derselben eine Strömungseintrittskante (12), eine Strömungsaustrittskante (13), eine Saugseite (14) und eine Druckseite (15) aufweist, wobei das Schaufelblatt (10) von einer Vielzahl von in Radialrichtung aufeinander gestapelten Schaufelblattabschnitten gebildet ist, deren Schwerpunkte entlang einer Stapelachse verlaufen, und wobei die Schaufelblattabschnitte derart in Radialrichtung aufeinander gestapelt sind, dass in einem sich an einen radial äußeren Abschnitt (20) des Schaufelblatts (10) anschließenden radial inneren Abschnitt (22) des Schaufelblatts (11) die Stapelachse ihren einzigen Wendepunkt in ihrem radialen Krümmungsverlauf aufweist, nämlich zwischen einem ersten, radial inneren Teilabschnitt (24) des radial inneren Abschnitts (22), in welchem die Stapelachse konkav zur Druckseite gekrümmt ist, und einem zweiten, radial äußeren Teilabschnitt (2e) des radial inneren Abschnitts (22), in welchem die Stapelachse konkav zur Saugseite gekrümmt ist.