摘要:
Apparatus and methods are described including a stent (20) configured to be placed inside an aorta of a subject, the stent comprising one or more electrodes (22), control circuitry (32), and a first antenna (28) coupled thereto. A second antenna (26) is placed on the subject, such that the second antenna extends at least from above a left clavicle of the subject to below a jugular notch of the subject and from below the subject's jugular notch to above a right clavicle of the subject, the second antenna being configured to transmit an electrical signal to the first antenna via inductive coupling. Other applications are also described.
摘要:
An implantable control module for an electrical stimulation system includes a connector to couple to a lead or lead extension; an electronics housing coupled to the connector and having a first major surface, a second major surface, and at least one side surface; and an electronic subassembly disposed within the electronics housing. The electronics housing includes a first portion formed of a first conductive material and a second portion formed of a second conductive material. The second portion forms at least part of the first major surface and extends to form an adjacent region of the side surface or the second major surface. In some embodiments, the first conductive material has a resistivity that is no more than 50% of a resistivity of the second conductive material. In some embodiments, the first conductive material is titanium and the second conductive material is a titanium alloy.
摘要:
A wireless charger for inductively charging a rechargeable battery of an implantable pulse generator (IPG) is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. The alignment circuit continuously detects a reflected impedance of the charging coil through a reflected impedance sensor, and controls a vibrator to output a tactile signal which is indicative of the alignment of the charging coil to the receiving coil based on the detected reflected impedance. Advantageously, the tactile feedback to the patient provides an optimal way to indicate the extent of the charger's alignment with the IPG.
摘要:
The present invention concerns an optoelectronic stimulating device for use in a medical treatment involving delivering an electrical current to an electrically excitable tissue (Z bio ) by means of two electrodes (3n, 3p) electrically coupled to said tissue, said optoelectronic stimulating device comprising: (a) a source (4) of electrical impulses, which is electrically connected to (b) a source of light emission (2), in optical communication with (c) a photovoltaic cell (1) electrically connected to two electrodes (3n, 3p) for establishing two electrical contacts with said tissue and thus forming an electrical stimulating circuit fed by the photovoltaic cell (1) which is energized by the radiation of the source of light emission (2).
摘要:
A medical apparatus for a patient comprises an external system configured to transmit one or more transmission signals, each transmission signal comprising at least power or data; and an implantable system configured to receive the one or more transmission signals from the external system. The apparatus can be configured to treat a patient and/or record patient data. Methods of treating a patient and recording patient data are also provided.
摘要:
An example of an implantable neuromodulation device includes a bioabsorbable electrode and an elongate bioabsorbable support structure carrying the electrode. The support structure is configured to expand in a direction perpendicular to its length so as to move the electrode into contact with a wall of a naturally occumng lumen of a human patient. The electrode is electrically energizable to modulate a nerve within tissue at or otherwise proximate to the wall of the lumen. An example of a neuromodulation method using the neuromodulation device includes locating the neuromodulation device at a treatment site within the lumen and deploying the neuromodulation device into an expanded treatment state at the treatment site. The method further includes reducing obstruction of blood flow through the lumen after deploying the neuromodulation device and then wirelessly energizing the electrode from an extracorporeal energy source.
摘要:
Among other things, in general, methods of increasing transfer efficiency in a power link are described, as well as power links implementing such methods. Methods of dynamic charging are also described. Applications of such methods and power links include the charging of portable electronic devices as well as implantable medical devices.
摘要:
An example of an implantable neuromodulation device includes a bioabsorbable electrode and an elongate bioabsorbable support structure carrying the electrode. The support structure is configured to expand in a direction perpendicular to its length so as to move the electrode into contact with a wall of a naturally occumng lumen of a human patient. The electrode is electrically energizable to modulate a nerve within tissue at or otherwise proximate to the wall of the lumen. An example of a neuromodulation method using the neuromodulation device includes locating the neuromodulation device at a treatment site within the lumen and deploying the neuromodulation device into an expanded treatment state at the treatment site. The method further includes reducing obstruction of blood flow through the lumen after deploying the neuromodulation device and then wirelessly energizing the electrode from an extracorporeal energy source.
摘要:
An apparatus comprises a communication channel comprising a plurality of disparate sequential communication links configured to facilitate bi-direction communication between an implantable medical device (IMD) and a programmer. A transceiver is configured to communicate with the programmer via a first communication link of the plurality of disparate communication links. A telemetry device is configured to communicate with the IMD via a second communication link of the plurality of disparate communication links. A third communication link communicatively couples the transceiver and the telemetry device. A power source is coupled to the transceiver and to the telemetry apparatus. An operational status of at least the first and second communication links can be individually determined in real-time.
摘要:
Described herein are devices, systems, and methods for wireless power transfer utilizing a midfield source and implant. In one variation, a midfield source may be realized by a patterned metal plate composed of one of more subwavelength structures. These midfield sources may manipulate evanescent fields outside a material (e.g., tissue) to excite and control propagating fields inside the material (e.g., tissue) and thereby generate spatially confined and adaptive energy transport in the material (e.g., tissue). The energy may be received by an implanted device, which may be configured for one or more functions such as stimulation, sensing, or drug delivery.