Abstract:
Trata-se anel (10) do tipo utilizado para vedação de envelope (EP) em pneu (P) para processo de vulcanização; dito anel de vedação (10) é instalado, aos pares, na face cônica (FC) de assentamento do talão (TL) do pneu sem câmara (PN); a montagem de cada anel de vedação (10) é realizada através de um conjunto de travas (CT) acionadas por molas de compressão (ML), cuja força é calculada para absorção das variações dimensionais decorrentes dos processos de fabricação do pneu ou das dilatações e deformações decorrentes de seu uso durante a vida útil; dito conjunto de travas (CT) pode ser fixado por meio de solda ou parafusos e são distribuídas radialmente em todo o perímetro interno da dita parede ortogonal (12) do anel (10); dita distribuição simétrica é variável em sua quantidade em função do dimensionamento do pneu (P) onde quanto maior o diâmetro (d) do pneu (P) maior a quantidade de travas (CT), sendo que o espaçamento (e) entre cada trava (CT) é definido para a montagem de ganchos de sustentação (GB) em qualquer dimensão de autoclave (AU) fabricada no mercado para cada segmento especifico de pneu (P); cada trava (CT) é compreendida por suporte (20) e mecanismo móvel (30) montados entre si pela justaposição de abas (21)/(31) através de um eixo transversal (E1); dito mecanismo móvel (30) articula no eixo (E1) do suporte (20) e é compreendido por peça única provida de setor de alojamento (SA) da pá (41) da alavanca de acionamento (40) e setor de pressão (SP) do flanco interno do talão (TL) para a vedação do envelope (EP) junto a face cônica (t1) do pneu (P).
Abstract:
An ice panel for a fan case of a gas turbine engine is disclosed. The ice panel may comprise a facesheet located on an inner surface of the fan case and it may comprise a chopped prepreg tape that is cured. The chopped prepreg tape may comprise randomly oriented chips of fibers impregnated with a resin matrix.
Abstract:
Solid compositions made from or coated with a non-melting organic polymer having a main glass transition temperature of at least 65°C, few if any isocyanate groups and a wet aged glass transition temperature of up to 60°C are self-bonding materials that are useful in a variety of adhesive and molding operations. Under conditions of heat and moisture, these compositions will self- bond. The compositions can be used as adhesive coatings, which are solid and non-tacky and thus can be transported and stored easily under ambient conditions. These compositions are especially useful in applications in which, due to the location and/or orientation of the substrates, liquid or melting materials cannot be applied easily or will run off the substrates.
Abstract:
A method of fabricating a preformed core material by utilizing a particulate preform process. The particulate core material is combined with an adhesive binder and deposited upon a porous surface (6), through which air is drawn, having the desired preform shape. Once the adhesive sets the deposited layer of core material is removed from the porous surface (6) and may be used as a core in a closed molding process. This method may also be used to fabricate a preformed laminate by depositing layers of fiber material before and/or after a core material is deposited.
Abstract:
A variety of hollow structures with unique morphologies were manufactured with a rotational spinning technique. Phase separation of soluble solutions or emulsions was induced within a filled mold as it was being rotated about one of its axis. The density difference between phases results in sediment at the inner lumen of the mold under centrifugal forces. After or during sedimentation, gelation of the phase-separated particles fixes the hollow structure morphology and the solvent remains in the center of the mold. The solvent is removed from the mold resulting in a coating or tube. By controlling the rotational speed and the formulation chemistry, the tube dimensions and wall morphology can be manipulated. This technique offers a new approach to the manufacture of polymeric tubes. It requires small quantities of starting material, permits multi-layering of tubes, is applicable to diverse polymers and can result in highly diffusive hollow structures while maintaining good mechanical strength.
Abstract:
This invention aims at simplifying a mold preparing process and developing a method capable of easily forming a mold of a very complicated shape, so as to reduce the sintered product manufacturing cost and time. A method capable of achieving the object has the steps of forming, using a photohardening molding method, a resin shell mold the inner surface of which is in conformity with the outer surface of a sintered product to be manufactured, filling a space inside the inner surface of the resin shell mold with a material to be sintered, and sintering the molded material to be sintered.
Abstract:
The present invention relates to a process for producing a hot melt adhesive (HMA) material, preferably hot melt pressure sensitive adhesive (HMPSA) material, having a substantially tack-free coating comprising a novel moulding and spraying step, wherein said HMA material, preferably HMPSA material, can be easily handled, packed and transported for further use. In addition, the present invention relates to a corresponding device for producing a hot melt adhesive (HMA) material, preferably hot melt pressure sensitive adhesive (HMPSA) material, having a substantially tack-free coating.