Abstract:
A signal detector employs a coherent accumulation system that coherently combines the correlation results derived from segments of samples of a received signal. The segments may have non-uniform lengths and may have been obtained over different and non-overlapping time periods. The segments are obtained during sampling windows of arbitrary length and at arbitrary times, and the results of processing the segments are successively combined in a coherent manner (separate magnitude and phase accumulation) until a threshold signal-to-noise ratio (SNR) has been achieved. Coherent integration is enabled by introducing a carrier phase offset as well as a code phase offset, so that different segments are aligned in carrier phase as well as code phase. Although not limited to this application, in one implementation example, the signal detector is used in connection with and as part of a global positioning system (GPS) receiver.
Abstract:
A method and system for knowing positioning system standard time at a mobile unit with respect to a system, such as the Global Positioning System, when normal, direct measurement may be impracticable owing to low signal-to-noise ratio, by calibrating the timing signal of an available communication network, such as a cellular telephone transmission network (610, 615). A time reference is set for the communcation network with respect to the positioning system at a time when an adequate signal-to-noise ratio prevails and the offset of a timing event in the communication network control signal measured by means of the mobile unit's internal clock may be determined (620, 625). Subsequent times are measured with respect to this time reference by using the internal clock to measure time intervals therefrom.
Abstract:
A method and apparatus for acquiring timing signals for use in a positioning receiver using timing assistance provided by a wireless communications system, such as cellular telephone system. A mobile terminal equipped with a positioning receiver operates in a wireless communications system having control channels and at least one traffic channel unsynchronized to the control channels. The mobile terminal camps on a first control channel in a first cell having a first time base associated therewith. While camped on the control channel, the mobile terminal establishes a local clock reference, internal to the mobile terminal, capable of tracking the first time base. The mobile terminal then operates on a first traffic channel that is unsynchronized to the first control channel and notes the difference in time bases between the control channel and the traffic channel. Either while camped on the control channel or while operating on the traffic channel, the mobile terminal receives TDMA-to-GPS relationship data, which is a measure of the offset between system time for the wireless communications system as expressed on particular control channel ("TDMA time") and the system time for the GPS system ("GPS time"). Thereafter, an accurate estimate of the GPS time is calculated in the mobile terminal based on the local clock reference and the TDMA-to-GPS relationship data. In some aspects, the local clock reference is updated based on the first traffic channel so as to minimize errors arising from timing drift.
Abstract:
A signal detector is provided in which complex samples of a received signal are multiplied (38) by data representative of a hypothesis, and the resulting product data is coherently integrated (40) over a desired duration to provide correlation data representative of the level of correlation between the hypothesis and the signal. In one embodiment, the signal detector is part of a GPS receiver.
Abstract:
A global positioning system (GPS) receiver has first circuitry for receiving and processing pseudorandom sequences transmitted by a number of GPS satellites. The first circuitry is configured to perform conventional correlation operations on the received pseudorandom sequences to determine pseudoranges from the GPS receiver to the GPS satellites. The GPS receiver also includes second circuitry coupled to the first circuitry. The second circuitry is configured to receive and process the pseudorandom sequences during blockage conditions. The second circuitry processes the pseudorandom sequences by digitizing and storing a predetermined record length of the received sequences and then performing fast convolution operations on the stored data to determine the pseudoranges. The GPS receiver may have a common circuitry for receiving GPS signals from in view satellites and downconverting the RF frequency of the received GPS signals to an intermediate frequency (IF). The IF signals are split into two signal paths, a first of which provides the conventional correlation processing to calculate the pseudoranges. During blockage conditions, the IF signal is passed to the second signal path wherein the IF signals are digitized and stored in memory and later processed using the fast convolution operations to provide the pseudoranges. Alternative arrangements for the two signal paths include separate downconverters or shared digitizers. One embodiment provides both signal paths on a single integrated circuit with shared circuitry executing computer-readable instructions to perform GPS signal processing appropriate to the reception conditions.
Abstract:
A positioning sensor receives and stores a predetermined record length of positioning signals while in a fix position located such that the positioning sensor can receive positioning signals. Thereafter, the stored positioning signals are processed to determine the geographic location of the fix position. The fix position may correspond to a location of an object of interest or it may be in a known location relative to the position of the object, in which case once the geographic location of the fix position has been computed, the geographic location of the object can be derived. The positioning sensor includes a Snapshot GPS receiver which may collect and process GPS signals transmitted by GPS satellites using fast convolution operations to compute pseudoranges from the GPS satellites to the fix position. Alternatively, these computations may be performed at a basestation. The computed pseudoranges may then be used to determine the geographic location of the fix position. The positioning sensor may be equipped with depth sensing means, such as a pressure sensor, which allows a determination of the depth of submerged object to be made. The positioning sensor may further be equipped with signal detecting means for determining when the positioning sensor is in the fix position.
Abstract:
Low-energy consumption techniques for locating a movable object using a global satellite navigation system (GNSS) are provided. A mobile station attached to or included in a movable object can communicate bidirectionally with a fixed base station to determine a location of the movable object. The mobile station may communicate an estimated position to the base station and receive from the base station a set of GNSS satellites that are visible to the mobile station. The mobile station can acquire satellite timing information from GNSS signals from the set of satellites and communicate minimally-processed satellite timing information to the base station. The base station can determine the position of the mobile station and communicate the position back to the mobile station. By offloading much of the processing to the base station, energy consumption of the mobile station is reduced.
Abstract:
A system and method is disclosed for updating the universal time within a GPS enable device in real-time and utilizing that corrected time to improve upon pseudorange calculations in the GPS devices. A time shim is introduced to correct outlier time values and provide improved pseudorange calculations to the device operating system, as well as draw upon various predictive smoothing methods of timestamp and position data to improve GPS location values. The improved GPS data is then provided to a location services process running on the device in an expected format and timing such that the operating system is unaware that the prior application interface of the system has been circumvented.
Abstract:
Systems and methods provide a network's synchronization status to a terminal when the terminal receives a transmission from the network. This network synchronization status can be indicated in accordance with various methods including, but not limited to the following: with a status flag in a network message; in a network capability indication; in a network's positioning capability indication; cell/network time relation information; in a time relation information of different Radio Access Technologies; and implicitly with another parameter and/or by a request for a certain measurement. When the network's synchronization status is determined, accurate time information/time assistance data can be maintained at the terminal.
Abstract:
The invention relates to a navigation systems and elements. A network element (M) comprises a receiver (M.2.2) for forming assistance data relating to at least one navigation system. The network element (M) inserts indication of the navigation system and a selected mode into the assistance data and constructs the assistance data according to the selected mode. The network element (M) has a transmitting element (M.3.1) for transmitting the assistance data via a communications network (P) to a device (R). The device (R) comprises a positioning receiver (R.3) for performing positioning on the basis of one or more signals of said at least one satellite navigation system; a receiver (R.2.2) for receiving the assistance data from the network element (M); and an examining element (R.1.1) adapted to examine the received assistance data. Said assistance data is adapted to be used by the positioning receiver for performing positioning of the device (R).