摘要:
A differential cascode structure is configured to propagate a data state to a static latch at each active edge of a clock. A clock generator enables the communication of the data state and its inverse to the latch for a predetermined time interval. In a first embodiment, each cascode structure includes three gates in series, the gates being controlled by the clock signal, a delayed inversion of the clock signal, and the data state or its inverse. In an alternative embodiment, each cascode structure includes two gates in series, the gates being controlled by the clock signal and the delayed inversion of the clock signal. In this alternative embodiment, each of these cascode structures is driven directly by the data signal or its inverse. The static latch obviates the need to precharge nodes within the device, thereby minimizing the power consumed by the device. The latch preferably comprises cross-coupled inverters, which, being driven by the differential cascode structure, enhance the switching speed.
摘要:
A latch and flip-flop are disclosed that have a reduced clock-to-q delay and/or a reduced setup time. This is preferably accomplished by providing both a data input signal and a complement data input signal to the latch or flip-flop. The data input signal and the complement data input signal are selectively connected to opposite sides of a pair of cross-coupled gates (409, 410) via a switch or the like. The switch is preferably controlled by an enable signal, such as a clock. With the switch elements enabled, the data input signal is passed directly to a data output terminal, and the complement data input signal is passed directly to a complement data output signal. Because the data input signal is passed directly to a data output terminal, and the complement data input signal is passed directly to a complement data output signal, the clock-to-q time may be reduced. In addition, because the data input signal and the complement data input signal drive opposite sides of the cross-coupled pair of gates, the state of the cross-coupled pair of gates can be more quickly set to a desired state. This helps reduce the clock-to-q time, as well as the setup time.
摘要:
The disclosure concerns asynchronous to synchronous synchronizers and particularly a technique which involves level shifting of a metastable voltage within a synchronizer stage. In a particular implementation of the invention, this level shifting is achieved by altering the relative proportions of at least one complementary pair of devices in a synchronizer in order to shift the level of a metastable voltage outside the range of a fatal voltage window possessed or exhibited by an adjacent or following part or stage of the synchronizer. By this means, although the occurrence of a metastable condition cannot be avoided, the likelihood of propagation of the metastable condition throughout the synchronizer may be very significantly reduced without the introduction of propagation delay. Alternatively an additional device such as a transistor (17e) may be inserted into a stack of devices connected to a node (24) at which the metastable voltage occurs.
摘要:
Methods and systems for clock gating are described herein. In certain aspects, a method for clock gating includes receiving an input signal of a flip-flop and an output signal of the flip-flop, and passing a clock signal to an input of a gate in the flip-flop if the input signal and the output signal have different logic values or both the input signal and the output signal have a logic value of zero. The method also includes gating the clock signal if both the input signal and the output signal have a logic value of one.
摘要:
Exemplary embodiments are directed to systems, methods, and devices for generating quadrature clock signals. A device may include a plurality of dynamic logic cells and a plurality of inverters. Each inverter of the plurality of inverters may be coupled to at least two dynamic logic cells of the plurality of dynamic logic cells. Each inverter may be configured to output a twenty-five percent duty cycle clock signal.
摘要:
Exemplary embodiments are directed to systems, methods, and devices for generating quadrature clock signals. A device may include a plurality of dynamic logic cells and a plurality of inverters. Each inverter of the plurality of inverters may be coupled to at least two dynamic logic cells of the plurality of dynamic logic cells. Each inverter may be configured to output a twenty-five percent duty cycle clock signal.
摘要:
A level shifting circuit (105) having a signal input that operates in a first voltage domain (LV DD ) and a signal output that operates in a second voltage domain (HV DD ). In some embodiments, the level shifting circuit includes a clocked level shifter. In some embodiments, the level shifting circuit includes a level shifting latch (208) that latches a translated output signal. In one example, the level shifting latch includes a latch portion and a stack of transistors (211, 213, 215, 217) with a transistor having a control electrode coupled to a clock input.
摘要:
Provided is a level shift circuit. The level shift circuit includes an inverter including a first transistor having a first polarity to which an input signal from an input port is applied through a gate and a second transistor having a second polarity which is an opposite polarity to the first polarity, the second transistor being connected in series to the first transistor between a positive source voltage and a negative source voltage and a connection node between the first and second transistors being an output port, a capacitor connected between a gate of the first transistor and a gate of the second transistor, and a voltage adjusting means for accurately adjusting a voltage applied to the gate of the second transistor according to an exact switching operation time of the second transistor, using a clock signal and an output port signal of the inverter. A stable and high-speed operation can be performed with a comparatively small size and low power consumption can be achieved.