Abstract:
A radio frequency integrated circuit (RFIC) is described. The RFIC includes a field effect transistor (FET). The FET has a ferroelectric gate stack having a source region, a drain region, a body region, and a gate. The RFIC also includes a first resistor coupled between a first bias supply and the body region. The RFIC further includes a second resistor coupled between the gate and a second bias supply.
Abstract:
Circuits and methods allowing virtually any number of batteries to be connected in parallel without the supply voltage being substantially reduced, while allowing their capacities to add directly as well as increasing the current capability of the batteries by placing the batteries' internal resistances in parallel.
Abstract:
Es wird eine Gleichrichterschaltung, welche einen Kathodenanschluss (K1), einen Anodenanschluss (A1) und zwischen dem Kathodenanschluss (K1) und dem Anodenanschluss (A1) eine elektronische Schaltung (2) aufweist, die mindestens einen MOSFET-Transistor (T1) mit integrierter Inversdiode (D6) enthält, beschrieben, wobei die Drain-Source-Durchbruchsspannung des im Avalanchebetrieb betriebenen MOSFET-Transistors (T1) der Klammerspannung zwischen dem Kathodenanschluss (K2) und dem Anodenanschluss (A2) der Gleichrichterschaltung (1) entspricht. Ferner wird ein Verfahren zum Betreiben einer Gleichrichterschaltung, welche einen Kathodenanschluss (K1), einen Anodenanschluss (A1) und zwischen dem Kathodenanschluss (K1) und dem Anodenanschluss (A1) mindestens einen MOSFET-Transistor (T1) mit integrierter Inversdiode (D6) enthält, vorgeschlagen, wobei die Drain-Source-Durchbruchspannung des MOSFET-Transistors (T1) entsprechend der Klammerspannung zwischen dem Kathodenanschluss (K2) und dem Anodenanschluss (A2) gewählt wird und der MOSFET-Transistor (T1) im Avalanchebetrieb betrieben wird.
Abstract:
Ce récupérateur d'énergie comporte: un convertisseur (20) apte à convertir une variation de l'énergie à récupérer en un excédent correspondant de charges électriques, un circuit (382) de collecte de l'excédent de charges électriques, ce circuit étant équipé d'un interrupteur commandable (384), et un dispositif de commande de l'interrupteur propre à commander la commutation de cet interrupteur vers sa position fermée. Le dispositif de commande est apte: à exercer une force qui sollicite les contacts électriques l'un vers l'autre, cette force variant continûment en fonction de la quantité de charges électriques présente sur la première borne et amenant les contacts électriques en appui l'un sur l'autre uniquement lorsque l'excédent de charges électriques dépasse un seuil prédéterminé, et/ou à ioniser le milieu électriquement isolant pour faire apparaître un arc électrique entre les deux contacts électriques uniquement lorsque l'excédent de charges électriques dépasse le seuil prédéterminé.
Abstract:
A modular multilevel converter system. The system includes a plurality of series connected two-terminal M2LC cells arranged into at least two output phase modules. A first one of the output phase modules has an inductance and an effective capacitance associated therewith. The first one of the output phase modules is configured so that a natural resonant frequency of the inductance with the effective capacitance of the first one of the output phase modules is greater than at least one of the following: an operating frequency of the first one of the output phase modules; a switching frequency of the first one of the output phase modules; and a switching frequency of any of the M2LC cells of the first one of the output phase modules.
Abstract:
Power switching circuits including an inductive load and a switching device are described. The switches devices can be either low-side or high-side switches. Some of the switches are transistors that are able to block voltages or prevent substantial current from flowing through the transistor when voltage is applied across the transistor.
Abstract:
An ORing element for use in a power supply and/or power system. The ORing element may include a field effect transistor (FET), a first bi-polar transistor and a second bi-polar transistor. The FET may be electrically connected between an input and an output. The first bi-polar transistor may have an emitter electrically connected to the source of the FET and a collector electrically connected to a gate of the FET. The second bi-polar transistor may be diode connected, with its emitter electrically connected to its base. The emitter of the second bi-polar transistor may also be electrically connected to the base of the first bi-polar transistor. The collector of the second bi-polar transistor may be electrically connected to the drain of the FET.
Abstract:
The aim of the invention is to discharge a first capacitor (CH) from a high voltage (VH) to a low voltage (VL). To this end, the one electrode of the first capacitor (CH) is linked with the one electrode of a second capacitor (CL) via a FET (P1) path. The other two electrodes of the two capacitors (CH, CL) are applied to a reference potential. A voltage source (UL) with its internal resistance (RL) is disposed in parallel to the second capacitor (CL). A discharge path leads from the one electrode of the first capacitor (CH) from the paths of two FET (P2, M1) and a protective resistor (R) to the reference potential. A current path leads from the one electrode of the second capacitor (CL) to the reference potential via the paths of two additional FET (P3, M2 or M3). A control unit (SE) switches on the discharge path. Once the voltage of the first capacity (CH) has decreased to the required lower value (VL), the discharge path is blocked while a holding path is opened.