Abstract:
A helmet can include a helmet body formed of a foam energy-absorbing material in which the helmet body includes inner and outer opposing surfaces. A plurality of lower slots can be formed completely through the helmet body and can be open at a lower edge of the helmet body. A plurality of upper slots can be formed completely through the helmet body and be open at a top portion of the helmet body to form a star shape. An S-shaped panel of the helmet body can include an undulating form from the alternating and overlapping positions of the plurality of lower slots and the plurality of upper slots. A reinforcing halo can be disposed within the helmet body to reinforce areas of weakness in the helmet body resulting from the plurality of lower slots and the plurality of upper slots.
Abstract:
A full-face motorcycle helmet can include a faceport opening that includes an upper edge, a lower edge, and an A-pillar extending between the upper edge of the faceport and the lower edge of the faceport. The chinbar can include a recess that begins immediately adjacent the A-pillar and includes a chinbar height Hcl within the recess that is greater than or equal to 60 millimeters (mm) and a chin bar height Hc2 outside and immediately adjacent the recess that is greater than or equal to 70 mm. The recess can include a height Hr that is greater than or equal to 5 mm for a distance in a range of 15-60 mm. The recess can further include a stair-step between the bottom of the recess and the top of the recess comprising a length that is less than or equal to 35 mm.
Abstract:
An adaptive fit helmet can comprise an outer shell, and energy-absorbing material, and a fit system. The outer shell can comprise a top portion, a side portion, and an outer expansion area that extends along an interface of the top portion and the side portion from a temple area of the outer shell to a lower exterior edge of the outer shell. The energy-absorbing material can be disposed withing the outer shell, wherein the energy-absorbing material further comprises a top portion, a side portion, and an inner expansion area between edges of the top portion and the side portion of the energy-absorbing material such that the inner expansion area corresponds with the outer expansion area. The fit system can comprise a belt and a fit system mechanism that control a three-dimensional size and shape of both the outer shell and the energy-absorbing material.
Abstract:
A method of making a semiconductor package can comprise forming a plurality of thick redistribution layer (RDL) traces over active surfaces of a plurality of semiconductor die that are electrically connected to contact pads on the plurality of semiconductor die, singulating the plurality of semiconductor die comprising the plurality of thick RDL traces, mounting the singulated plurality of semiconductor die over a temporary carrier with the active surfaces of the plurality of semiconductor die oriented away from the temporary carrier, disposing encapsulant material over the active surfaces and at least four side surfaces of each of the plurality of semiconductor die, over the plurality of thick RDL traces, and over the temporary carrier, forming a via through the encapsulant material to expose at least one of the plurality of thickened RDL traces with respect to the encapsulant material, removing the temporary carrier, and singulating the plurality of semiconductor die.
Abstract:
A helmet can comprise an upper-body comprising an upper outer shell, a first foam energy-absorbing material coupled the upper outer shell, and an upper vent opening formed through the upper-body. The helmet can comprise a lower-body nested within the upper-body, wherein the lower-body comprises a lower outer shell, a second foam energy-absorbing material coupled the outer shell, and a lower vent opening formed through the lower-body and overlapping with the upper vent opening. The helmet can comprise a vent closure system comprising a vent cover disposed between an inner surface of the upper-body and an outer surface of the lower-body, wherein the vent closure system is configured to adjustably block 0- 100 percent of the overlap between the upper vent opening and the lower vent opening with the vent cover. An adjustable position of the vent cover can be determined by a position of a vent actuator tab.
Abstract:
A helmet can comprise an upper-body and a lower-body nested within the upper-body. An opening can be formed within a front portion of the helmet and disposed between an outer surface of the upper-body and an inner surface of the lower-body. A first magnet can be encased within the upper-body or the lower-body and adjacent the opening. A shield can comprise a shield mount and a second magnet coupled to the shield mount that is sized to fit within the opening and to be releasably coupled to the first magnet. The first magnet and the second magnet can be self-aligned in direct alignment with eyes of a user. A third magnet can be disposed above the first magnet and aligned with the second magnet on an outer surface of the helmet out of sight from eyes of the user.
Abstract:
A webbing adjuster for maintaining orderly, adjustable strap arrangement and secure connections in, e.g., a helmet, which allows for strap adjustment and, upon cinching, secures straps in place. The adjuster can be used in mountaineering, with motorcycle and bicycle helmets, and in other applications that benefit from orderly, adjustable strap arrangement and/or secure connections.
Abstract:
A semiconductor device and method of making a semiconductor device is described, An embedded die panel comprising a plurality of semiconductor die separated by saw streets is provided. A conductive layer is formed by an electroless plating process, the conductive layer comprising bussing lines disposed in the saw streets and a redistribution layer (RDL) coupled to the semiconductor die and bussing lines. An insulating layer is formed over the conductive layer and embedded die panel, the insulating layer comprising openings disposed over the conductive layer outside a footprint of the semiconductor die. Interconnect structures are formed in the openings in the insulating layer by using the conductive layer as part of an electroplating process. The embedded die panel is singulated through the saw streets after forming the interconnect structures to remove the bussing lines and to form individual fan-out wafer level packages.
Abstract:
A method of detecting FN code synchronization for a DSSS signal comprising receiving a DSSS data signal of data frames comprised of I and Q symbols, at least a portion of each data frame comprising a unique word, demodulating the data signal into I and Q chip samples, filtering the I and Q chip samples and outputting the filtered I and Q chip samples to a chip stream controller which outputs the plurality of chip streams to a correlation matrix that correlates the plurality of chip streams with the chipped unique word and outputs a correlated data stream, A plurality of FFTs is run on the correlated output data stream and a processor searches for a maximum frequency bin power of each FF'T. A PN synchronization detector searches for a maximum frequency bin power among the plurality of FFT runs and determines whether PN synchronization is present.
Abstract:
An adaptive patterning method and system for fabricating panel based package structures is described. A plurality of semiconductor die comprising a copper column disposed over the active surface of each semiconductor die is provided. An embedded die panel is formed by disposing an encapsulant around each of the plurality of semiconductor die. A true position and rotation of each semiconductor die within the embedded die panel is measured. A unit-specific pattern is formed to align with the true position of each semiconductor die in the embedded die panel. The unit-specific pattern as a fan-out structure disposed over the semiconductor die, over the encapsulant, and coupled to the copper columns. A fan-in redistribution layer (RDL) can extend over the active surface of each semiconductor die such that the copper columns formed over the fan-in RDLs. The unit-specific pattern can be directly coupled to the copper columns.