摘要:
Electronic device package technology is disclosed. In one example, an electronic device package can include a substrate, an electronic component disposed on the substrate and electrically coupled to the substrate, and an underfill material disposed at least partially between the electronic component and the substrate. A lateral portion of the underfill material can comprises a lateral surface extending away from the substrate and a meniscus surface extending between the lateral surface and the electronic component.
摘要:
Disclosed is a die packaging structure comprising a semiconductor die, an encapsulant layer disposed around the semiconductor die, wherein a backside surface of the semiconductor die is exposed, and a conductive layer coupled to the semiconductor die, the conductive layer comprising a plurality of conductive pillar bumps, wherein a bump density of the plurality of conductive pillar bumps is greater than 5%, wherein the encapsulant layer is further disposed between the plurality of conductive bumps, and wherein the encapsulant layer is disposed between the plurality of conductive bumps using a mold underfill (MUF) process. A method of forming the same is also disclosed.
摘要:
A package assembly can include a substrate having a first substrate surface. The first substrate surface including a conductive layer attached to the first substrate surface. The package assembly includes a die communicatively coupled to the conductive layer and a contact block. The contact block including a first contact surface on one end of the contact block, a second contact surface on an opposing side of the contact block, and a contact block wall extended therebetween. The contact block includes a conductive material. The first contact surface is coupled to the package assembly with a joint extended partially up the contact block wall. An electronic package further includes the package assembly and an overmold covering portions of the substrate, conductive layer, and die. The second contact surface of the contact block is exposed through the overmold.
摘要:
Discussed generally herein are methods and devices for more reliable Package on Package (PoP) Through Mold Interconnects (TMIs). A device can include a first die package including a first conductive pad on or at least partially in the first die package, a dielectric mold material on the first die package, the mold material including a hole therethrough at least partially exposing the pad, a second die package including a second conductive pad on or at least partially in the second die package the second die package on the mold material such that the second conductive pad faces the first conductive pad through the hole, and a shape memory structure in the hole and forming a portion of a solder column electrical connection between the first die package and the second die package.
摘要:
A method of making a semiconductor device can include providing a temporary carrier with adhesive. A first semiconductor die and a second semiconductor die can be mounted face up to the temporary carrier such that back surfaces of the first semiconductor die and the second semiconductor die are depressed within the adhesive. An embedded die panel can be formed by encapsulating at least four sides surfaces and an active surface of the first semiconductor die, the second semiconductor die, and side surfaces of the conductive interconnects in a single step. The conductive interconnects of the first semiconductor die and the second semiconductor die can be interconnected without a silicon interposer by forming a fine-pitch build-up interconnect structure over the embedded die panel to form at least one molded core unit. The at least one molded core unit can be mounted to an organic multi-layer substrate.
摘要:
A semiconductor package interconnect system may include a conductive pillar having a core (242), a first layer (244) surrounding the core (242), and a second layer (246) surrounding the first layer (244). The core (242) may be composed of a drawn copper wire, the first layer (244) may be composed of nickel, and the second layer (246) may be composed of a solder. A method for manufacturing a semiconductor package with such a conductive pillar may include placing a plurality of conductive pillars (240) on a substrate using a stencil process.