Abstract:
Devices and methods for isolating, detecting, and positioning single polymeric molecules without the need for expensive equipment are provided. The disclosed devices and methods allow for a molecule to be quickly and efficiently transported to a specific sub-micron area. Such devices are useful, for instance, for performing analyses in which the sequence of a polymer of interest is determined.
Abstract:
The methods and apparatus disclosed herein are useful for detecting nucleotides, nucleosides, and bases and for nucleic acid sequence determination. The methods involve detection of a nucleotide, nucleoside, or base using surface enhanced Raman spectroscopy (SERS) or surface enhanced coherent anti-Stokes Raman spectroscopy (SECARS). The detection can be part of a nucleic acid sequencing reaction to detect uptake of a deoxynucleotide triphosphate during a nucleic acid polymerization reaction, such as a nucleic acid sequencing reaction. The nucleic acid sequence of a synthesized nascent strand, and the complementary sequence of the template strand, can be determined by tracking the order of incorporation of nucleotides during the polymerization reaction. Methods for enhancing the SERS signal of a nucleotide or nucleoside by cleaving the base from a sugar moiety are provided. Furthermore, methods for detecting single base repeats are provided.
Abstract:
The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles (140, 230) to polymer (120, 210) molecules, attaching the polymer (120, 210) molecules to a substrate, removing the polymer (120, 210) molecules and producing carbon nanotubes on the catalyst nanoparticles (140, 230). The polymer (120, 210) molecules alignment techniques. The nanotube arrays can be attached to selected areas (110, 310) of the substrate. Within the selected areas (110, 310), the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods. In certain embodiments, provided herein are methods for aligning a molecular wire, by ligating the molecular wire to a double stranded DNA molecule.
Abstract:
The invention provides methods for analyzing the protein content of a biological sample, for example to obtain a protein profile of a sample provided by a particular individual. The proteins and protein fragments in the sample are separated on the basis of chemical and/or physical properties and maintained in a separated state at discrete locations on a solid substrate or within a stream of flowing liquid. Raman spectra are then detected as produced by the separated proteins or fragments at the discrete locations such that a spectrum from a discrete location provides information about the structure or identity of one or more particular proteins or fragments at the discrete location. The proteins or fragments at discrete locations can be coated with a metal, such as gold or silver, and/or the separated proteins can be contacted with a chemical enhancer to provide SERS spectra. Method and kits for practicing the invention are also provided.