Abstract:
The embodiments of the invention are directed to a SERS cluster comprising a capture particle that is at least partially surrounded by analyte molecules, wherein both the capture particle and the analyte molecules surrounding the capture particle are at least partially surrounded by enhancer particles, wherein a majority of the analyte molecules are either sandwiched between capture and enhancer particles or located between junctions of the enhancer particles. The embodiments of the invention also relate to methods of manufacturing and detecting the SERS cluster. The embodiments of the invention also relate to a SERS active particle comprising a tag molecule comprising a Raman active compound and a probe or a linker having a specific biochemical binding capability and to a method for detecting of a target molecule using a SERS active particle having a tag molecule comprising a Raman active compound and a probe or a linker.
Abstract:
Embodiments of the invention relate to detecting biological molecules with ultra-sensitivity and convenience. The embodiments are especially directed to utilizing nanoparticles as tags and identifying the tags using a nuclear magnetic resonance device. The probes containing the nanoparticles can be used in solution or attached to a substrate.
Abstract:
The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles (140, 230) to polymer (120, 210) molecules, attaching the polymer (120, 210) molecules to a substrate, removing the polymer (120, 210) molecules and producing carbon nanotubes on the catalyst nanoparticles (140, 230). The polymer (120, 210) molecules alignment techniques. The nanotube arrays can be attached to selected areas (110, 310) of the substrate. Within the selected areas (110, 310), the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods. In certain embodiments, provided herein are methods for aligning a molecular wire, by ligating the molecular wire to a double stranded DNA molecule.
Abstract:
Various methods of using Raman-active or SERS-active probe constructs to detect analytes in biological samples, such as the protein-containing analytes in a body fluid are provided. The probe moieties in the Raman-active constructs are selected to bind to and identify specific known analytes in the biological sample or the probe moieties are designed to chemically interact with functional groups commonly found in certain amino acids so that the invention methods provide information about the amino acid composition of protein-containing analytes or fragments in the samples. In some cases, the Ramanactive or SERS-active probe constructs, when used in the invention methods, can identify particular protein-containing analytes or types of such analytes so that a protein profile of a patient sample can be made. When compared to a data base of Raman or SERS spectra of normal samples, a disease state of a patient can be identified using the methods disclosed.
Abstract:
The methods and apparatus disclosed herein concern nucleic acid characterization by enhanced Raman spectroscopy. In certain embodiments of the invention, exonuclease treatment of the nucleic acids results in the release of nucleotides. The nucleotides may pass from a reaction chamber through a microfluidic channel and enter a nanochannel or microchannel. The nanochannel or microchannel may be packed with nanoparticle aggregates containing hot spots for Raman detection. As the nucleotides pass through the nanoparticle hot spots, they may be detected by Raman spectroscopy. Identification of the sequence of nucleotides released from the nucleic acid is used to characterize the nucleic acid, for example by sequencing or identifying the nucleic acid. Other embodiments of the invention concern apparatus for nucleic acid sequencing.
Abstract:
The presently claimed invention provides for novel methods and kits for reducing the complexity of a nucleic acid sample by providing non-gel based methods for size fractionation. In a preferred embodiment, size fractionation can be accomplished by varying conditions or reagents of a PCR reaction to amplify fragments of specific size ranges. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the desired fragments for particular characteristics, such as, for example, the presence or absence of a polymorphism.
Abstract:
The presently claimed invention provides for novel methods and kits for reducing the complexity of a nucleic acid sample by providing non-gel based methods for size fractionation. In a preferred embodiment, size fractionation can be accomplished by varying conditions or reagents of a PCR reaction to amplify fragments of specific size ranges. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the desired fragments for particular characteristics, such as, for example, the presence or absence of a polymorphism.
Abstract:
Systems and method are disclosed for quoting, adjusting and settling futures contracts by successively removing the just-realized variables from the quoted futures price to focus the quoted contract value to the remaining unrealized economic variables. Further, such systems and method for quoting, adjusting and settling the futures contracts preserve the underlying economic consideration for the trade when compared with the traditional way of quoting futures based on the same cumulative sum.
Abstract:
Embodiments of the invention relate to detecting biological molecules with ultra-sensitivity and convenience. The embodiments are especially directed to utilizing nanoparticles as tags and identifying the tags using a nuclear magnetic resonance device. The probes containing the nanoparticles can be used in solution or attached to a substrate.
Abstract:
The embodiments of the invention are directed to a SERS cluster comprising a capture particle that is at least partially surrounded by analyte molecules, wherein both the capture particle and the analyte molecules surrounding the capture particle are at least partially surrounded by enhancer particles, wherein a majority of the analyte molecules are either sandwiched between capture and enhancer particles or located between junctions of the enhancer particles. The embodiments of the invention also relate to methods of manufacturing and detecting the SERS cluster. The embodiments of the invention also relate to a SERS active particle comprising a tag molecule comprising a Raman active compound and a probe or a linker having a specific biochemical binding capability and to a method for detecting of a target molecule using a SERS active particle having a tag molecule comprising a Raman active compound and a probe or a linker.