Abstract:
A vent plug (64) attaches to (plugs) a vent port (62) of a lithium ion battery module (28), and is configured to be situated within a vent hose (122) associated with a vehicle (10) or other system in which the battery module (28) is utilized. The vent plug (64) is designed to operate to release the internal pressure of the battery module (28) via the vent port (62) once the internal pressure reaches a threshold.
Abstract:
A battery module includes a housing having a wall. The wall includes an opening extending from an inner surface of the wall facing an interior of the housing to an outer surface of the wall opposite to the inner surface. The battery module also includes a connector barrel having a first open end, a second open end, and a body portion extending between the first and second open ends. The body portion is positioned within the opening of the wall, the first open end is positioned within the interior of the housing, and the second open end is positioned external to the housing. A ridge on the body portion is disposed proximate to the outer surface of the wall, and a first circumferential bump on the body portion is disposed proximate to the inner surface of the wall. The battery module also includes a securement component disposed within a space defined by the first circumferential bump of the connector barrel. The wall is sandwiched between the ridge of the connector barrel and the securement component.
Abstract:
The present disclosure a battery module having electrochemical cells and a bus bar carrier. The bus bar carrier includes a finger having a first surface, a second surface opposite to the first surface and configured to be disposed proximate to a first electrochemical cell of the plurality of electrochemical cells, a thickness extending between the first surface and the second surface, an opening extending through the first surface, through the thickness, and through the second surface, and a cavity disposed adjacent to the opening and exposed through the second surface of the finger. The battery module also includes a lead wire passing through the opening from the first surface of the finger to the second surface of the finger, and a sensor coupled to the lead wire to enable communication between the sensor and the first electrochemical cell, wherein the sensor is disposed in the cavity.
Abstract:
The present disclosure relates to a battery module. The battery module includes a housing defined by one or more walls. A wall of the housing includes an opening configured to create a passageway between an interior of the housing and an exterior of the housing. The battery module includes a connector barrel disposed within the opening. The connector barrel is a hollow conduit with a first open end opposite a second open end, and the connector barrel is configured to receive a low voltage signal connector through the first open end and a vehicle control module connector through the second open end. An external surface of the connector barrel includes a pair of protrusions configured to enable intimate contact between the wall of the housing and the connector barrel.
Abstract:
The present disclosure includes a battery module having a housing, electrochemical cells disposed in the housing and electrically coupled together via bus bars, two or more sensors in electrical communication with the bus bars, and two or more leads corresponding with the two or more sensors and extending away from the two or more sensors. The battery module also includes a bundle mechanism that bundles the two or more leads together in a bundle, and a pass through sized and positioned to accommodate the bundle of two or more leads passing therethrough from a first side of the housing proximate which the bus bars are disposed to a second side of the housing. The battery module also includes a printed circuit board (PCB) disposed on the second side of the housing and configured to receive the bundle of two or more leads.
Abstract:
The present disclosure includes a battery module having a stack of electrochemical cells that includes terminals, a housing that receives the stack of electrochemical cells, and a bus bar carrier disposed over the stack of electrochemical cells such that bus bars disposed on the bus bar carrier interface with the terminals of the stack of electrochemical cells. The bus bar carrier includes opposing first and second guide extensions, the stack of electrochemical cells is disposed between the opposing first and second guide extensions, and the opposing first and second guide extensions physically contact a first outer electrochemical cell and a second outer electrochemical cell, respectively, of the stack of electrochemical cells to guide the terminals of the stack of electrochemical cells toward corresponding ones of the bus bars disposed on the bus bar carrier.
Abstract:
The present disclosure includes a battery module having a group of electrically interconnected electrochemical cells, a battery module terminal configured to be coupled to a load for powering the load, and an electrical path extending between the group of electrically interconnected electrochemical cells and the battery module terminal, where the electrical path includes a bus bar bridge. The battery module also includes a housing, where the group of electrically interconnected electrochemical cells is disposed within the housing, and the housing includes a pair of extensions positioned along sides of the bus bar bridge and configured to retain the bus bar bridge and to block movement of the bus bar bridge in at least one direction.
Abstract:
The present disclosure includes a battery module that includes an electrochemical cell having a minor terminal. The battery module also includes a major terminal electrically coupled to the electrochemical cell, wherein the major terminal includes a base and a post extending from the base. Further, the battery module includes an electrical path between the minor terminal of the electrochemical cell and the major terminal of the battery module. The electrical path includes a bus bar having an opening that receives the post of the major terminal and a pocket that retains the base of the major terminal.
Abstract:
The present disclosure includes a battery system with a battery module (20) having electrochemical cells (32) inside a housing (30) which includes a first side (42) and a second side (44) opposite to the first side. The battery module includes a heat sink (49) coupled with the second side (44) of the housing and a thermal interface (50) disposed between, and in contact with, the heat sink (49) and the electrochemical cells (32). The thermal interface (50) contacts the base ends (53) of the electrochemical cells (32). The system further includes a cage (80) disposed about the battery module (20) wherein said cage includes a cage side (85) positioned next to the second side (44) of the housing and having openings (82) which enable air to be drawn into the cage and to pass over the heat sink (49).
Abstract:
The present disclosure includes a group of electrically interconnected battery cells disposed within a housing. The disclosure also includes a major terminal of a battery module configured to be coupled to a load for powering the load. One or more portions of the major terminal are disposed within a recess in a surface of the housing. The present disclosure also includes a bus bar that provides an electrical pathway between the group of electrically interconnected battery cells and the major terminal. The bus bar is disposed within the housing.