Abstract:
A lithium-ion (Li-ion) battery (28) includes a plurality of battery cell stacks (50), wherein each battery cell stack (50) of the plurality of battery cell stacks (50) includes a plurality of Li-ion battery cells (54). The Li-ion battery (28) also includes a battery housing (42), the battery housing (42) having a plurality of cell compartments (74) formed by internal dividers (72) integral with the battery housing (42). Each cell compartment (74) of the plurality of cell compartments (74) is sized to receive a corresponding one battery cell stack (50) of the plurality of battery cell stacks (50).
Abstract:
The present disclosure relates generally to the field of batteries and battery modules, and more specifically, relates to a system and method for manufacturing terminal assemblies for lithium-ion battery modules. A disclosed battery module includes a terminal block assembly that is secured to a polymer housing of the battery module. The terminal block assembly includes a terminal post having a post portion and a base portion that extends outward from a central axis of the post portion. The terminal block assembly also includes a bus bar coupled to the base portion of the terminal post without welding, wherein the bus bar includes a trough disposed near the terminal post. The terminal block assembly further includes a polymer portion overmolding at least the trough of the bus bar to form a drainage channel near the terminal post.
Abstract:
The present disclosure includes a battery module having a housing with a wall that includes an aperture in the wall. The battery module also includes an electrochemical cell having a terminal end and a base end opposite the terminal end. The electrochemical cell is disposed within the housing such that the base end is positioned proximate to the aperture of the wall. Further, a heat sink of the battery module is engaged with the aperture and includes cooling fins extending outwardly from the heat sink a first distance from an external surface of the wall. The battery module also includes feet of the housing extending outwardly from the wall a second distance from the external surface of the wall. The second distance is greater than the first distance.
Abstract:
A lithium ion battery module includes a battery cell stack disposed within a housing of the battery module. The stack includes a first battery cell, a second battery cell positioned adjacent to the first battery cell, and a battery cell separator fitted over the first battery cell. The battery cell separator includes a plurality of walls formed from a continuous material and defining a pocket in which the first battery cell is disposed. The plurality of walls is configured to electrically insulate the first cell from the second cell. The separator also includes a projection extending from a wall of the plurality of walls, the projection is positioned between a terminal of the first battery cell and a terminal of the second battery cell and is configured to electrically insulate the terminals from one another.
Abstract:
Relays having internal connections on both sides of their switches may be used in conjunction with a connector that integrates both the normal relay switch control lines with the sensing conductors of a control module for a battery module of an energy storage device. In this manner, sensing conductors may be routed along with the switch control lines for the relay instead of separately as described above. This integration reduces the complexity and cost associated with the energy storage device, because it reduces the number of separately routed lines and also eliminates the external connections for at least some of the sensing conductors.
Abstract:
The present disclosure includes a system having a battery module (20) including a housing (31) having a top side, a lateral side, and an edge extending along and between the top side and the lateral side. The battery module (20) also includes electrochemical cells (30) disposed in the housing (31), and a heat sink (41) disposed on the lateral side of the housing. A fan (62) is disposed over the top side of the housing (31). A hood (54) includes a first hood portion (56) disposed over the top side of the housing and the fan and a second hood portion (58) coupled to the first hood portion and disposed over the lateral side of the housing, where the hood defines an airspace between the hood and the housing and the hood is configured to guide an airflow through the airspace from the fan on the top side of the housing, over the edge between the top side and the lateral side of the housing, and over the heat sink disposed on the lateral side of the housing.
Abstract:
Present embodiments include a lithium ion battery module having a lineup of prismatic lithium ion battery cells positioned within a cell receptacle area of a housing of the lithium ion battery module. The prismatic battery cells of the lineup are spaced apart from one another in a spaced arrangement by fixed protrusions extending from internal surfaces of the housing forming the cell receptacle area, and the fixed protrusions extend inwardly to form a plurality of discontinuous slots across a width of the cell receptacle area.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.
Abstract:
A battery system having a bladed fuse connector and a method of operation of the bladed fuse connector are provided. The system may, in certain embodiments, include a printed circuit board (PCB) and a high current interconnect. The high current interconnect may be mounted to and extending upward from the PCB. The battery system may also include a fuse. The fuse may limit an amount of current flowing through the battery system. Additionally, the battery system may include a bladed fuse connector coupled between the high current interconnect and the fuse. The bladed fuse connector may carry a current between the high current interconnect and the fuse. To that end, the bladed fuse connector may include an S-shaped bend between the high current interconnect and the fuse.
Abstract:
The present disclosure relates to bonding or sealing metal parts to the polymer packaging of certain battery modules. The present disclosure includes a battery module having a polymer packaging with an interior and exterior and a plurality of battery cells disposed within the interior of the polymer packaging. The battery module includes a metal part that extends from the interior to the exterior of the polymer packaging and is in thermal or electrical contact with at least a portion of the plurality of battery cells. The metal part includes a bonding surface that is secured to an overmolded portion of the polymer packaging, wherein the bonding surface has a microsurface roughness that hermetically seals the bonding surface of the metal part to the overmolded portion of the polymer packaging.