Abstract:
A process for generating at least one polyol from a feedstock comprising saccharide is performed in a continuous or batch manner. The process involves, contacting, hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one unsupported component and at least one supported component.
Abstract:
A solid terephthalic acid composition and a process for producing terephthalic acid from para-xylene. The process comprises forming a mixture comprising the para-xylene, a solvent, a bromine source, and a catalyst; and oxidizing the para-xylene by contacting the mixture with an oxidizing agent at oxidizing conditions to produce a solid oxidation product comprising terephthalic acid, para-toluic acid, 4-carboxybenzaldehyde. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an dialkyl imidazolium ionic liquid; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. The solid terephthalic acid composition comprises, less than about 4,000 ppm-wt 4-carboxybenzaldehyde content, and more than about 2,000 ppm-wt a para-toluic acid.
Abstract:
Methods are provided for producing low oxygen biomass-derived pyrolysis oil from carbonaceous biomass feedstock. The carbonaceous biomass feedstock is pyrolyzed in the presence of a steam reforming catalyst to produce char and pyrolysis gases. During pyrolysis, a portion of the oxygenated hydrocarbons in the pyrolysis gases is converted into hydrocarbons by steam reforming also yielding carbon oxides and hydrogen gas. The hydrogen gas at least partially deoxygenates a residual portion of the oxygenated hydrocarbons. Additional hydrogen gas may also be produced by water-gas shift reactions to deoxygenate the residual portion of the oxygenated hydrocarbons in the pyrolysis gases. Deoxygenation may occur in the presence of a hydroprocessing catalyst. A condensable portion of the pyrolysis gases is condensed to form low oxygen biomass-derived pyrolysis oil.
Abstract:
A process for removing a nitrogen compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced nitrogen content relative to the vacuum gas oil feed.
Abstract:
A process for removing a sulfur compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the sulfur compound with a VGO-immiscible ionic liquid to produce a vacuum gas oil and VGO-immiscible ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced sulfur content relative to the vacuum gas oil feed.
Abstract:
A process has been developed for producing aviation fuel from renewable feedstocks such as plant oils and animal fats and oils. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide n-paraffins having from 8 to 24 carbon atoms. At least some of the n-paraffins are isomerized to improve cold flow properties. At least a portion of the paraffins are selectively cracked to provide paraffins meeting specifications for different aviation fuels such as JP- 8.
Abstract:
A process for denitrogenating diesel fuel includes contacting diesel fuel containing one or more nitrogen compounds with an acid ionic liquid in an extraction zone to selectively remove the nitrogen compound(s) and produce a denitrogenated diesel fuel effluent containing denitrogenated diesel fuel and acid ionic liquid containing nitrogen species; and separating denitrogenated diesel fuel from the denitrogenated diesel fuel effluent.