Abstract:
The shift register includes first to fourth flip-flops. A first clock signal which is in a first voltage state in a first period and in a second voltage state in second to fourth periods is input to the first flip-flop. A second clock signal which is in the first voltage state in the second period and in the second voltage state in the third period and the fourth period is input to the second flip-flop. A third clock signal which is in the second voltage state in the first, second, and fourth periods and in the first voltage state in the third period is input to the third flip-flop. A fourth clock signal which is in the second voltage state in the first and second periods and in the first voltage state in the fourth period is input to the fourth flip-flop.
Abstract:
A highly reliable display device which has high aperture ratio and includes a thin film transistor with stable electrical characteristics is manufactured. The display device includes a driver circuit portion and a display portion over the same substrate. The driver circuit portion includes a driver circuit thin film transistor and a driver circuit wiring. A source electrode and a drain electrode of the driver circuit thin film transistor are formed using a metal. A channel layer of the driver circuit thin film transistor is formed using an oxide semiconductor. The driver circuit wiring is formed using a metal. The display portion includes a pixel thin film transistor and a display portion wiring. A source electrode and a drain electrode of the pixel thin film transistor are formed using a transparent oxide conductor. A semiconductor layer of the pixel thin film transistor is formed using the oxide semiconductor. The display portion wiring is formed using a transparent oxide conductor.
Abstract:
An object is to reduce the manufacturing cost of a semiconductor device. An object is to improve the aperture ratio of a semiconductor device. An object is to make a display portion of a semiconductor device display a higher-definition image. An object is to provide a semiconductor device which can be operated at high speed. The semiconductor device includes a driver circuit portion and a display portion over one substrate. The driver circuit portion includes: a driver circuit TFT in which source and drain electrodes are formed using a metal and a channel layer is formed using an oxide semiconductor; and a driver circuit wiring formed using a metal. The display portion includes: a pixel TFT in which source and drain electrodes are formed using an oxide conductor and a semiconductor layer is formed using an oxide semiconductor; and a display wiring formed using an oxide conductor.
Abstract:
A semiconductor device is provided in which a pixel portion and a driver circuit each including a thin film transistor are provided over one substrate; the thin film transistor in the pixel portion includes a gate electrode layer, a gate insulating layer, an oxide semiconductor layer having an end region with a small thickness, an oxide insulating layer in contact with part of the oxide semiconductor layer, source and drain electrode layers, and a pixel electrode layer; the thin film transistor in the pixel portion has a light-transmitting property; and source and drain electrode layers of the thin film transistor in the driver circuit portion are formed using a conductive material having lower resistance than a material of the source and drain electrode layer in the pixel portion.
Abstract:
A photoelectric conversion device includes a photoelectric conversion element; a ramp-wave output circuit; a first comparator for comparing the ramp-wave signal and a first potential; a second comparator for comparing the ramp-wave signal and a second potential; a flip-flop circuit for generating a clock signal whose frequency is changed in accordance with the amount of photocurrent; a circuit for calculating a negative OR of the output signal of the first comparator and the output signal of the second comparator; a counter circuit for counting the pulse number of the clock signal; and a pulse output circuit for generating a period during which the pulse number is counted in the counter circuit. The pulse output circuit includes a switch for stopping the generation of the period during which the pulse number is counted.
Abstract:
Provided is a display device with high resolution, high display quality, or high aperture ratio. A pixel includes three subpixels and is electrically connected to two gate lines. One of the gate lines is electrically connected to a gate of a transistor included in each of the two subpixels, and the other gate line is electrically connected to a gate of a transistor included in the other subpixel. Display elements of the three subpixels are arranged in the same direction. Three pixel electrodes of the three subpixels are arranged in the same direction.
Abstract:
A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with improved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.
Abstract:
A circuit which detects an output current from a pixel and an output current from an input device, and converts the output current into data is provided. The current detection circuit includes an integrator circuit, a comparator, a counter, and a latch. The integrator circuit integrates the potential of a first signal during a period determined by a second signal and outputting it as a third signal. The comparator compares the potential of the third signal with a first potential and outputting a fourth signal. The counter outputs the number of pulses included in a fifth signal as a sixth signal during a period determined by the fourth signal. The latch holds the sixth signal. The integrator circuit preferably further includes an operational amplifier and some capacitors. The first signal is supplied from a pixel included in a display device or an input portion included in an input device.
Abstract:
To provide a touch sensor including a transistor and a capacitor in which the transistor and the capacitor are electrically connected to each other, the capacitor includes a pair of electrodes and a dielectric layer, the dielectric layer is located between the pair of electrodes, and one of the pair of electrodes includes an oxide conductor layer. To provide a touch panel including the touch sensor, a light-blocking layer, and a display element in which the touch sensor is located more on the display surface side of the touch panel than on the display element side, the light-blocking layer is located more on the display surface side than on the touch sensor side, the display element includes a portion overlapping with the capacitor, and the light-blocking layer includes a portion overlapping with the transistor.
Abstract:
To provide a display device that is suitable for increasing in size, a display device in which display unevenness is suppressed, or a display device that can display an image along a curved surface. The display device includes a first display panel and a second display panel each including a pair of substrates. The first display panel and the second display panel each include a first region which can transmit visible light, a second region which can block visible light, and a third region which can perform display. The third region of the first display panel and the first region of the second display panel overlap each other. The third region of the first display panel and the second region of the second display panel do not overlap each other.