Abstract:
Embodiments of the invention include wound packing devices and methods of making and using the same. In an embodiment, the invention includes a wound packing device including a plurality of spacing elements capable of absorbing exudate, wherein the surface of the spacing elements resist colonization by microorganisms. The wound packing device can also include a connector connecting the plurality of spacing elements to one another. Other embodiments are also included herein.
Abstract:
The present invention relates to a catheter assembly (10) that can deliver a therapeutic composition. The catheter assembly can include an outer balloon (30) with openings (36) for releasing the therapeutic composition. When the catheter assembly is in its contracted state, the openings are closed, and the assembly retains the therapeutic composition. When the catheter assembly is in its dilated state, the openings are open, and the therapeutic composition is released. The present invention also includes methods of making and using such a catheter assembly.
Abstract:
Embodiments of the invention include multi-layer coatings and methods for controlling the elution of hydrophilic active agents. In an embodiment, the invention includes a medical device including a substrate, a primer polymer layer disposed on the substrate, an expandable layer disposed on the primer polymer layer, and a hydrophilic active agent dispersed within the expandable layer. In an embodiment, the invention includes a method of forming a medical device including depositing a primer layer onto a substrate, the primer layer comprising a primer polymer. The method can further include depositing an expandable layer onto the primer layer, the expandable layer including an expandable polymer, and a hydrophilic active agent. The expandable layer can be deposited with a solvent that is effective to solvate both the expandable polymer and the primer polymer. Other embodiments are also included herein.
Abstract:
Disclosed herein are systems and methods useful for delivery of suspensions and other microparticle compositions, and, in particular, for delivering microparticles at desired dosing levels and eliminating blockages within microparticle suspensions positioned within a delivery device.
Abstract:
The invention provides fluorinated polymeric articles formed a composition including a fluoropolymer. The fluoropolymer is formed using a fluorinated monomer that provides the fluoropolymer with most or all of the fluorine atoms not directly covalently attached to an atom of the fluoropolymer backbone. The fluoropolymer can also include a non-fluorinated hydrophilic monomer in a weight amount greater than the fluorinated monomer. The fluoropolymer composition also includes an ultraviolet light (UV)-reactive group capable of covalent bonding to promotes formation of the fluorinated polymeric article. The fluorinated polymeric article can be in the form of a durable lubricious coating on the surface of an implantable medical device. Coatings of the invention exhibit excellent wet/dry lubricity, durability, and controlled swelling.
Abstract:
Embodiments of the invention include glycerol esters and use of the same for active agent delivery systems and methods. In an embodiment, the invention includes an active agent eluting device including a glycerol ester, an active agent dispersed within the glycerol ester, the active agent eluting device configured to elute the active agent from the glycerol ester in response to degradation of the glycerol ester. In an embodiment, the invention includes a composition including a glycerol ester; an active agent dispersed within the glycerol ester; the active agent eluting device configured to elute the active agent from the glycerol ester in response to degradation of the glycerol ester. Other embodiments are also included herein.
Abstract:
Embodiments of the invention include bioactive agent eluting devices. In an embodiment the invention includes a bioactive agent delivery device including a substrate, a hydrophilic polymer disposed on the substrate, and a substantially amorphous bioactive agent disposed on the surface of the hydrophilic polymer. In an embodiment, the invention includes a method of making a bioactive agent delivery device including depositing a hydrophilic polymer on a substrate forming a hydrophilic surface and depositing a substantially amorphous bioactive agent on the hydrophilic surface. In an embodiment, the invention includes a bioactive agent-eluting catheter including a catheter shaft and an expandable balloon disposed on the catheter shaft. Other embodiments are included herein.
Abstract:
Embodiments of the invention include particles with nucleic acid complexes, medical devices including the same and related methods. In an embodiment, the invention can include a method of making a medical device. The method can include contacting nucleic acids with cationic carrier agents to form nucleic acid complexes, adsorbing the nucleic acid complexes to porous particles to form nucleic acid complex containing particles, mixing the nucleic acid complex containing particles with a polymer solution to form a coating mixture, and applying the coating mixture to a substrate. In an embodiment, the method can include contacting nucleic acids with cationic carrier agents to form nucleic acid complexes, combining the nucleic acid complexes with a material to form nucleic acid complex containing particles in situ, mixing the nucleic acid complex particles with a polymer solution to form a coating mixture, and applying the coating mixture to a substrate. In an embodiment, the invention can include an implantable medical device including a substrate, an elution control matrix disposed on the substrate; a plurality of particles disposed within the elution control matrix, and a plurality of nucleic acid complexes disposed within the particles, the nucleic acid complexes comprising a nucleic acid and a cationic carrier agent. Other embodiments are included herein.
Abstract:
The invention provides biodegradable degradable matrix materials. The matrix materials of the invention are useful in a variety of applications such as to make implantable medical devices (e.g., implants, coatings, in-situ formed matrices, stents, tubes, aneurysm coils, and the like), in-situ delivery (e.g., cell delivery or bioactive agent delivery), and as tissue sealants. In many embodiments, the matrix materials of the invention are formed by reacting: (a) a first component comprising an aminated natural degradable polysaccharide with (b) a second component comprising an amine-reactive compound.
Abstract:
The invention relates to systems and methods for applying coatings to devices. In an embodiment, the invention includes a coating apparatus including a mandrel having a lengthwise axis and an exterior surface, the exterior surface of the mandrel defining a plurality of channels disposed parallel to the lengthwise axis, the mandrel configured to rotate around the lengthwise axis; and a spray head configured to direct a stream of material at the mandrel. In an embodiment the invention includes a method of applying a coating to a medical device. Other embodiments are also included herein.