Abstract:
The present invention discloses composite with high energy storage capacity in energy storage devices comprising graphene, mesoporous graphitic carbon nitride (mc@g-C 3 N 4 ) and to the process for preparation thereof. The present invention further discloses electrodes employing the said compositie and fabrication of high energy high power storage devices such as the Electric Double Layer Capacitor (EDLC) with these electrodes.
Abstract:
In one aspect, separator-free energy storage devices are disclosed. Such devices comprise a first electrode and a second electrode. In some embodiments, the first electrode is opposite the second electrode. The first and/or second electrodes are formed from a nanocomposite material. The nanocomposite material includes plurality of carbon nanostructures, each of which is at least partially coated with a layer of material comprising a transition metal oxide. In some embodiments, the coating layer is uniform or substantially uniform in one or more properties.
Abstract:
Miniature capacitive deionization devices and related systems and methods are generally described. The devices may be incorporated as part of a water treatment and process system. Humidifier systems comprising a humidifier unit and a capacitive deionization device fluidically coupled with the humidifier unit are also disclosed. For example, the miniature capacitive deionization devices may be incorporated into a point of use humidifier.
Abstract:
A method involves contacting a material for a lithium-based energy storage device with a supercritical substance maintained at or above its critical point. A lithium-based energy storage device is also provided, in which at least one of the various component parts (battery separator, lithium salt, negative electrode, negative current collector, positive electrode, and positive current collector) is substantially free of residual water by contact with the supercritical substance maintained at or above its critical point.
Abstract:
Embodiments of the disclosure set forth energy storage devices. Some example energy storage devices include a first hybrid capacitor, a first battery and an electric double-layer capacitor. The first hybrid capacitor includes a first positive electrode, a first negative electrode and a first electrolyte. The first battery couples to the first hybrid capacitor and includes a second positive electrode, a second negative electrode and a second electrolyte. The electric double-layer capacitor couples to the first battery and includes a third positive electrode, a third negative electrode and a third electrolyte. The first positive electrode includes the second positive electrode.
Abstract:
본 발명은 고분자바인더조성물에 관한 것으로, 보다 상세하게는 접착성과 전도성을 동시에 갖는 일체형 전도성고분자 바인더조성물, 상기 바인더조성물 제조방법, 상기 바인더조성물을 포함하는 에너지 저장장치 상기 바인더조성물로 형성된 감지부를 포함하는 센서, 및 상기 바인더조성물을 유효성분으로 포함하는 부식방지용 코팅조성물에 관한 것이다.
Abstract:
Die Erfindung schafft ein elektrisches Energiespeichermodul (100), aufweisend: wenigstens einen Speicherzellstapel (10), mit: mehreren Energiespeicherzellen (1), welche jeweils ein Zellgehäuse (1a) mit jeweils zwei Polanschlüssen (1b,1c) aufweisen, wobei die Energiespeicherzellen (1) in dem Speicherzellstapel (10) seriell derart angeordnet sind, dass jeweils ein erster Polanschluss (1b) und ein zweiter Polanschluss (1c) mit unterschiedlichen Polaritäten zweier benachbarter Energiespeicherzellen (1) miteinander mittels flächig ausgebildeter Zellverbindungselemente (4) galvanisch verbunden sind, wobei die Zellgehäuse (1a) aller Energiespeicherzellen (1) galvanisch miteinander verbunden sind, wobei der erste Polanschluss (1b) einer an einem ersten Ende des Speicherzellstapels (10) angeordneten Energiespeicherzelle (1) galvanisch mit dem Zellgehäuse (1a) verbunden ist, und wobei der zweite Polanschluss (1c) einer an einem zweiten Ende des Speicherzellstapels (10) angeordneten Energiespeicherzelle (1) und die Zellgehäuse (1a) jeweils einen flächig ausgebildeten Rückleiter (5) aufweisen.
Abstract:
Disclosed is a power storage unit which can safely operate over a wide temperature range. The power storage unit includes: a power storage device; a heater for heating the power storage device; a temperature sensor for sensing the temperature of the power storage device; and a control circuit configured to inhibit charge of the power storage device when its temperature is lower than a first temperature or higher than a second temperature. The first temperature is exemplified by a temperature which allows the formation of a dendrite over a negative electrode of the power storage device, whereas the second temperature is exemplified by a temperature which causes decomposition of a passivating film formed over a surface of a negative electrode active material.