Abstract:
Stents including a poly(D,L-lactide)(PDLLA)-based scaffold and PDLLA based therapeutic layer are disclosed. The PDLLA based scaffold may be amorphous and may include a primer layer. Methods of applying the PDLLA-based coating to the scaffold are disclosed with solvent processing methods using a solvent blend are also disclosed. Methods of removing residual solvent from a PDLLA-base coating that also condition the scaffold are disclosed. Methods of treating restenosis that release drugs to prevent restenosis without interfering with the natural positive remodeling of a vessel are disclosed.
Abstract:
Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having thin struts in a selected range and sufficient radial strength to support a vessel upon deployment are disclosed. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
Abstract:
Stent scaffolds that include a polymeric structure or structures bonded to the scaffold and extending along their length are disclosed. The polymeric structure extends across some or all of the gaps in struts along the length of the scaffold. Segmented scaffolds are also disclosed that include two or more axial segments arranged end to end not connected by link sruts.
Abstract:
Methods of fabricating an implantable medical devices such as stents made from biodegradable polymers are disclosed that reduce or minimize chain scission and monomer generation during processing steps. The method includes processing a poly(L-lactide) resin having an number average molecular weight between 150 to 200 kD in an extruder in a molten state. A poly(L-lactide) tube is formed from the processed resin and a stent is fabricated from the tube. The number average molecular weight of the poly(L-lactide) of the stent after sterilization is 70 to 100 kD.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
Methods to expand polymer tubing with desirable or optimum morphology and mechanical properties for stent manufacture and fabrication of a stent therefrom are disclosed.
Abstract:
Methods of fabricating a polymeric stent from a polymer sheet with improved strength, modulus and fracture toughness are disclosed. The methods include stretching the polymer sheet along one or more axes to increase the strength, fracture toughness, and modulus of the polymer along the axis of stretching. The methods further include forming a tubular stent from the stretched sheet. The stent can include a slide-and-lock mechanism that permits the stent to move from a collapsed diameter to an expanded diameter and inhibiting radial recoil from the expanded diameter.
Abstract:
The use of nucleating agents to manufacture polymeric stents is disclosed. The resulting stents may have increased crystallinity, decreased crystal size, increased mechanical properties, and faster degradation times.
Abstract:
The present invention relates to the regional delivery of therapeutic agents for the treatment of vascular diseases wherein regional delivery refers to delivery of a therapeutically effective amount of the therapeutic agent to an area of the vessel that includes not only afflicted tissue but non-afflicted tissue at the periphery of the afflicted tissue as well.