Abstract:
A bipolar flow battery, an assembly comprising a bipolar flow battery in a casing, and methods for producing hydrogen, or both hydrogen and electricity, with the bipolar flow battery or assembly.
Abstract:
Extremely-low frequency (ELF) electromagnetic radiation is known to cause deleterious health effects and is a significant byproduct of the use of Wi-Fi routers and other electronic devices. Electromagnetic protection devices and reduction materials which absorb ELF, electromagnetic protection devices comprising such materials, and methods for reducing ELF exposure are described herein.
Abstract:
Electrochemical cells and batteries that can operate with a single electrolyte solution, such as those comprising an anode, a current collector, and a porous, non-conductive spacer between the current collector and anode. Membraneless electrochemical cells and batteries are also disclosed. The electrochemical cells and batteries disclosed herein may be used, for example, to produce electricity or to generate hydrogen, and to deliver electricity or hydrogen to process applications.
Abstract:
Methods and delivery systems for providing a gas phase of a multi-component liquid source for delivery to a critical process application are provided. The methods include concentration of a component of the liquid source which is less volatile than water for delivery of a gas stream comprising the less volatile component to a critical process application. Critical process applications include decontamination and microelectronic processing applications.
Abstract:
A method and chemical delivery system are provided. The method includes providing a concentrated aqueous hydrogen peroxide solution in a boiler having a head space, boiling the concentrated aqueous hydrogen peroxide solution to produce a dilute vapor comprising hydrogen peroxide within the head space of the boiler, and adding a dilute aqueous hydrogen peroxide solution to the concentrated aqueous hydrogen peroxide solution within the boiler to maintain the concentration of the aqueous hydrogen peroxide solution in the boiler. The method further includes delivering the dilute vapor comprising hydrogen peroxide to a critical process or application. The chemical delivery system includes a concentrated aqueous hydrogen peroxide solution, a boiler having a head space configured for boiling the concentrated aqueous hydrogen peroxide solution and producing a dilute vapor comprising hydrogen peroxide within the head space, and a manifold configured for adding a dilute aqueous hydrogen peroxide solution to the concentrated aqueous hydrogen peroxide solution within the boiler to maintain the concentration of the aqueous hydrogen peroxide solution in the boiler, wherein the manifold is further configured to deliver the dilute vapor comprising hydrogen peroxide to a critical process or application.
Abstract:
Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y- axial directions.
Abstract:
A system for contaminant removal from a fluid stream comprises a plurality of flow through reactors arranged in stages that are spaced apart from one another, each reactor comprising at least one flow-through monolith configured to react with at least one contaminant in a fluid stream, and a flow control system configured to selectively control through which of the plurality of flow-through reactor stages a fluid stream containing at least one contaminant may pass.
Abstract:
A solar heat collection element includes: a central tube (102) formed from glass-ceramic material; and an outer tube (104) formed from glass material disposed coaxially with respect to the central tube (102) to form a volume therebetween (106).
Abstract:
An oxygen-ion conducting membrane structure comprising a monolithic inorganic porous support, optionally one or more porous inorganic intermediate layers, and an oxygen-ion conducting ceramic membrane. The oxygen-ion conducting hybrid membrane is useful for gas separation applications, for example O 2 separation.
Abstract:
Hybrid membrane structures that include: an inorganic porous support that includes first and second ends, and a plurality of inner channels having surfaces defined by porous walls and extending through the support from the first to the second ends; optionally, one or more porous inorganic intermediate layers coating the inner channel surfaces; and a polymeric amine-containing membrane.