Abstract:
A method for fabricating a unitary component for a combustor is disclosed, said method comprising the steps of determining three-dimensional information of the unitary component 60, converting the three-dimensional information into a plurality of slices that each define a cross-sectional layer of the unitary component 60, and successively forming each layer of the unitary component 60 by fusing a metallic powder using laser energy. A combustor component 60, 50 is disclosed, comprising a body 61, 51 having a unitary construction wherein the body 61, 51 is made by using a rapid manufacturing process.
Abstract:
A device includes a first electrode and a second electrode spaced from the first electrode to define a volume. An anion exchange membrane and a cation exchange membrane are disposed within the volume. A controller controls a supply of electrical current from an electrical source to the first electrode and to the second electrode. The electrical current supply is controlled to switch from a first mode of operation to a second mode of operation providing electrical current having a reverse polarity during each cycle. The electrical current is supplied at a controlled cycle rate and for a controlled duration. The cycle rate is greater than about 100 hertz and less than about 10 kilohertz.
Abstract:
Disclosed is a method for substantially diminishing or essentially eliminating a visible knitline in an article derived from a resinous composition comprising at least one thermoplastic resin and at least one special visual effect additive, which comprises the steps of (i) including in the composition an effective amount of at least one chemical foaming agent, and (ii) forming the article in a process that produces a knitline, wherein the article exhibits a substantially diminished or essentially no visible knitline compared to a similar article prepared without chemical foaming agent. Also disclosed are resinous compositions related thereto. Articles made from the compositions are also disclosed.
Abstract:
An article includes a substrate assembly for use in a detector system. The substrate assembly includes a substrate; a sample reception structure secure to the substrate; a test window extending through the substrate; and a fluid channel defined by a surface of the substrate and extending from the sample reception structure to the test window. The test window being transparent to light at particular warelennghts for example ultraviolet.
Abstract:
A polycrystalline body includes aluminum oxide, magnesium oxide, zirconium oxide, and lutetium oxide. The lutetium oxide is present in an amount of at least 10 ppm of the weight of the ceramic body, and the magnesium and zirconium oxides are present at a molar ratio of from 0.5:1 to 3 : 1.
Abstract:
A method has been found for the removal of microbial biofilm on surfaces in contact with systems, including but not limited to aqueous systems, which comprises adding to the aqueous system an effective amount of a polyethyleneimine surfactant to substantially remove microbial biofilm, from surfaces in aquatic systems, while presenting minimal danger to non-target aquatic organisms at discharge due to their very low discharge concentrations.
Abstract:
An energy management system is provided for use with one of a plurality of hybrid energy diesel electric vehicles. The energy management system includes a position identification device to provide position information of one the plurality of vehicles at incremental positions along one of a plurality of routes. More particularly, the energy management system includes a database to store historical data of a traction and/or auxiliary energy demand for each vehicle at incremental positions along each route, and an energy management processor coupled to the position identification device and the database. The energy management system retrieves historical data of each vehicle at incremental positions along each route to estimate an anticipated traction and/or auxiliary energy demand of the one of a plurality of vehicle at each incremental position along one of a plurality of routes.
Abstract:
A system is provided for sensing misalignment of a railroad signaling system. The railroad signaling system inciudβs at least one railroad signai coupled to at least one elongated member adjacent to a railroad. The system includes at least one transmitter positioned within at least one elongated member, and at least one receiver positioned from each of said at least one transmitter within at least one adjacent elongated member to the at least one elongated member. More particularly, the system includes at least one electronic device coupled to each of a transmitter and each of at least one receiver, to sense detection of each transmitter by at least one receiver of at least one receiver indicative of misalignment of the railroad signaling system.
Abstract:
A system and method for controlling a power output of an auxiliary alternator of a diesel powered system having at least one diesel-fueled power generating unit, the alternator powering at least one dynamoelectric device of the diesel powered system. The system includes an alternator coupled to the diesel- fueled power generating unit having a wound rotor for supplying electrical power to at least one dynamoelectric device of the diesel powered system. The system also includes a controller for determining a desired operating frequency of the dynamoelectric device and providing a control signal for producing the desired operating frequency. The system further includes a regulator for providing a rotor control output responsive to the control signal to control an electrical condition of the rotor for adjusting the electrical power supplied to the dynamoelectric device effective to produce the desired operating frequency.
Abstract:
A thermo-optically functional composition is disclosed. The composition includes a solid solution of at least two materials selected such that the composition emits thermal radiation, wherein each material is selected from the group consisting of metal carbides, metal nitrides, metal oxides, metal borides, metal suicides and combinations thereof, wherein each metal is selected from the group consisting of tungsten or tungsten alloys, hafnium or hafnium alloys, niobium or niobium alloys, tantalum or tantalum alloys, titanium or titanium alloys, zirconium or zirconium alloys, and combinations of two or more thereof.