Abstract:
Methods and apparatus provide for sourcing a glass web, the glass web having a length and a width transverse to the length; continuously moving the glass web from the source to a destination in a transport direction along the length of the glass web; and cutting the glass web at a cutting zone into at least first and second glass ribbons as the glass web is moved from the source to the destination, the first glass ribbon having a first width and the second glass ribbon having a second width, where the first and second widths are not equal.
Abstract:
Apparatuses and methods are described for separating glass sheets from lengths of flexible glass. According to one embodiment, a glass processing apparatus comprises a vent forming device configured to provide a partial or full vent in a surface of a length of flexible glass along an intended line of separation, a break table comprising a first portion and a second portion, the first or second portions of the break table configured to rotate with respect to each other along a hinging line, and a glass securing device configured to secure the length of flexible glass to the first and second portions of the break table for separating the length of flexible glass into multiple lengths of flexible glass along the intended line of separation.
Abstract:
Disclosed is a method of separating a glass sheet from a moving glass ribbon, wherein the glass ribbon comprises thickened bead portions. The method comprises weakening the bead portions of the ribbon using laser-initiated ablation at the bead portions to overcome the potential for uncontrolled cracking through the bead portion.
Abstract:
This disclosure describes a process for strengthening, by ion-exchange, the edges of an article separated from a large glass sheet after sheet has been ion exchanged to strengthen by exposing the one or a plurality of the edges of the separated article, only, to an ion exchange medium (for example without limitation, a salt, paste, frit, glass) while the glass surface is maintained at temperatures less than 200 °C.
Abstract:
A method for cutting a flexible glass ribbon includes directing the flexible glass ribbon to a flexible glass cutting apparatus including a laser. The flexible glass ribbon includes a first broad surface and a second broad surface that extend between a first edge and a second edge of the flexible glass ribbon. A laser beam is directed from the laser onto a region of the flexible glass ribbon. A crack is formed through the flexible glass ribbon using the laser beam. The crack is propagated along the flexible glass ribbon using the laser beam and a local mechanical deformation in the flexible glass ribbon.
Abstract:
A method of removing a desired part of a thin sheet (20) from a thin sheet bonded to a carrier (10) by a bonded area (40) that surrounds a non-bonded area (50), wherein the method includes forming a perimeter vent (60) defining a perimeter of the desired part (56), wherein the perimeter vent is disposed within the non-bonded area and has a depth >= 50% of the thickness (22) of the thin sheet. Prior to removing the desired part, a device may be processed onto the thin sheet. In some processes, the carrier is diced so it may be processed in smaller sizes, yet maintains a hermetically sealed edge. After dicing, an additional part of the device may be processed onto the thin sheet, and the desired part is removed by removing a desired part of the thin sheet from the carrier.
Abstract:
A method of cutting a glass article includes translating a laser beam relative to a first surface of the glass article. The laser beam includes a beam waist having a center. The center of the beam waist of the laser beam is positioned at or below a second surface of the glass article. The laser beam creates a plurality of defects along a score line in the glass article such that the plurality of defects extends a distance into the glass article, and at least some individual defects of the plurality of defects are non-orthogonal to the first surface of the glass article and are biased in a direction of translation of the laser beam. Glass articles having edge defects are also disclosed.
Abstract:
A method of removing a desired part of a thin sheet (20) from a thin sheet bonded to a carrier (10) by a bonded area (40) that surrounds a non-bonded area (50), wherein the method includes forming a perimeter vent (60) defining a perimeter of the desired part (56), wherein the perimeter vent is disposed within the non-bonded area and has a depth.. 50% of the thickness (22) of the thin sheet. Prior to removing the desired part, a device may be processed onto the thin sheet. In some processes, the carrier is diced so it may be processed in smaller sizes, yet maintains a hermetically sealed edge. After dicing, an additional part of the device may be processed onto the thin sheet, and the desired part is removed by removing a desired part of the thin sheet from the carrier.