Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low T g glass, a precursor of a low T g glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200°C.
Abstract:
A process for preparing a surface of a material that is not bondable to make it bondable to the surface of another material. A non-bondable surface of a semiconductor wafer is treated with oxygen plasma to oxidize the surface of the wafer and make the surface smoother, hydrophilic and bondable to the surface of another substrate, such as a glass substrate. The semiconductor wafer may have a barrier layer thereon formed of a material, such as SixNy or SiNxOy that is not bondable to another substrate, such as a glass substrate. In which case, the oxygen plasma treatment converts the surface of the barrier layer to oxide, such as SiO2, smoothing the surface and making the surface hydrophilic and bondable to the surface of another substrate, such as a glass substrate. The converted oxide layer may be stripped from the barrier layer or semiconductor wafer with an acid, in order to remove contamination on the surface of the barrier layer or semiconductor wafer, the stripped surface may undergo a second oxygen plasma treatment to further smooth the surface, and make the surface hydrophilic and bondable to the surface of another substrate
Abstract:
A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200°C.
Abstract:
A method of removing a desired part of a thin sheet (20) from a thin sheet bonded to a carrier (10) by a bonded area (40) that surrounds a non-bonded area (50), wherein the method includes forming a perimeter vent (60) defining a perimeter of the desired part (56), wherein the perimeter vent is disposed within the non-bonded area and has a depth >= 50% of the thickness (22) of the thin sheet. Prior to removing the desired part, a device may be processed onto the thin sheet. In some processes, the carrier is diced so it may be processed in smaller sizes, yet maintains a hermetically sealed edge. After dicing, an additional part of the device may be processed onto the thin sheet, and the desired part is removed by removing a desired part of the thin sheet from the carrier.
Abstract:
A method of removing a desired part of a thin sheet (20) from a thin sheet bonded to a carrier (10) by a bonded area (40) that surrounds a non-bonded area (50), wherein the method includes forming a perimeter vent (60) defining a perimeter of the desired part (56), wherein the perimeter vent is disposed within the non-bonded area and has a depth.. 50% of the thickness (22) of the thin sheet. Prior to removing the desired part, a device may be processed onto the thin sheet. In some processes, the carrier is diced so it may be processed in smaller sizes, yet maintains a hermetically sealed edge. After dicing, an additional part of the device may be processed onto the thin sheet, and the desired part is removed by removing a desired part of the thin sheet from the carrier.
Abstract:
A method for fabricating a high-density array of holes in glass comprises providing a glass sheet having a front surface and irradiating the glass sheet with a laser beam so as to produce open holes extending into the glass sheet from the front surface of the glass sheet. The beam creates thermally induced residual stress within the glass around the holes, and after irradiating, the glass sheet is annealed to eliminate or reduce thermal stress caused by the step of irradiating. The glass sheet is then etched to produce the final hole size. Preferably, the glass sheet is also annealed before the step of irradiating, at sufficiently high temperature for a sufficient time to render the glass sheet dimensionally stable during the step of annealing after irradiating.