摘要:
A magnetic photonic crystal for providing asymmetry of spatial frequencies in the propagation of light is provided. The crystal is formed from at least two materials having different indices of refraction which are aligned along the longitudinal axis of the crystal. And arranged in an array whose symmetry does not include a spatial inversion operator such that (x,y) =/= (-x,-y). One or more of the materials forming the array is magnetic such that the magnetic group representation of the array does not include time inversion as a symmetric operator. In operation, when the magnetic material forming the material is magnetized, the group velocity property of light propagated in one direction along the axis of the array is different from the group velocity property of light transmitted in an opposite direction through the array. The magnetic photonic crystal may be used, for example, as an optical memory device or a high speed modulator/demodulator.
摘要:
A method of determining parameters of plurality of thermal cycles to achieve a set glass strain level includes providing a plurality of input parameters for a glass substrate and a plurality of parameters for a plurality of thermal cycles. The method also includes iteratively modifying at least one of the pluralities of thermal cycle parameters so the glass strain is not greater than the set glass strain level after a final thermal cycle is completed. An aspect of the method usefully enables a user to determine from the material parameters and processing sequences of the glass manufacturer and further entities that may further process the glass (e.g., the glass manufacturer's customers) whether a particular glass strain can be achieved; and if not the example embodiments allows the manufacturer to calculate changes in the customers' processes to meet the desired glass strain.
摘要:
A strengthened glass that does not exhibit frangible behavior when subjected to impact or contact forces, and a method of strengthening a glass. The glass may be strengthened by subjecting it to multiple, successive, ion exchange treatments. The multiple ion exchange treatments provide a local compressive stress maximum at a depth of the strengthened layer and a second local maximum at or near the surface of the glass.
摘要:
A magnetic photonic crystal for providing asymmetry of spatial frequencies in the propagation of light is provided. The crystal is formed from at least two materials having different indices of refraction which are aligned along the longitudinal axis of the crystal. And arranged in an array whose symmetry does not include a spatial inversion operator such that (x,y) =/= (-x,-y). One or more of the materials forming the array is magnetic such that the magnetic group representation of the array does not include time inversion as a symmetric operator. In operation, when the magnetic material forming the material is magnetized, the group velocity property of light propagated in one direction along the axis of the array is different from the group velocity property of light transmitted in an opposite direction through the array. The magnetic photonic crystal may be used, for example, as an optical memory device or a high speed modulator/demodulator.
摘要:
The invention relates to fused silica having low compaction under high energy irradation, particularly adaptable for use in photolithography applications.
摘要:
Disclosed are synthetic silica glass having a low polarization-induced birefringence, process for making the glass and lithography system comprising optical element made of the glass. The silica glass has a polarization-induced birefringence measured at 633 nm of less than about 0.1 nm/cm when subjected to excimer laser pulses at about 193 nm having a fluence of about 40 µJ•cm-2•pulse-1 and a pulse length of about 25 ns for 5 x 109 pulses.
摘要翻译:公开了具有低偏振诱发双折射的合成石英玻璃,用于制造玻璃的方法和包含由玻璃制成的光学元件的光刻系统。 当经受约193nm的准分子激光脉冲时,石英玻璃在633nm处测量的偏振诱发双折射小于约0.1nm / cm,脉冲约为40μJcm -2脉冲-1,脉冲长度约为 5 x 109脉冲为25 ns。
摘要:
A method of determining parameters of plurality of thermal cycles to achieve a set glass strain level includes providing a plurality of input parameters for a glass substrate and a plurality of parameters for a plurality of thermal cycles. The method also includes iteratively modifying at least one of the pluralities of thermal cycle parameters so the glass strain is not greater than the set glass strain level after a final thermal cycle is completed. An aspect of the method usefully enables a user to determine from the material parameters and processing sequences of the glass manufacturer and further entities that may further process the glass (e.g., the glass manufacturer's customers) whether a particular glass strain can be achieved; and if not the example embodiments allows the manufacturer to calculate changes in the customers' processes to meet the desired glass strain.
摘要:
Methods of drawing glass sheet via a downdraw process are provided. In certain aspects, the methods utilize rapid cooling below the root (70) of the forming apparatus (10). Such rapid cooling can, for example, facilitate the use of glass having a liquidus viscosity less than about 100,000 poise. In other aspects, the methods utilize slow cooling between the viscosities of 10 11 poises and 10 14 poises. Such slow cooling can facilitate the production of glass substrates which exhibit low levels of compaction. In further aspects, substrates are removed from the glass sheet at elevated temperatures which can facilitate increases in the production rates of downdraw machines. In still further aspects, rapid cooling below the root, slow cooling between the viscosities of 10 11 poises and 10 14 poises, and/or substrate removal at elevated temperatures are combined. Such combinations can facilitate economically effective utilization of downdraw equipment.
摘要:
Methods of drawing glass sheet via a downdraw process are provided. In certain aspects, the methods utilize rapid cooling below the root (70) of the forming apparatus (10). Such rapid cooling can, for example, facilitate the use of glass having a liquidus viscosity less than about 100,000 poise. In other aspects, the methods utilize slow cooling between the viscosities of 10 11 poises and 10 14 poises. Such slow cooling can facilitate the production of glass substrates which exhibit low levels of compaction. In further aspects, substrates are removed from the glass sheet at elevated temperatures which can facilitate increases in the production rates of downdraw machines. In still further aspects, rapid cooling below the root, slow cooling between the viscosities of 10 11 poises and 10 14 poises, and/or substrate removal at elevated temperatures are combined. Such combinations can facilitate economically effective utilization of downdraw equipment.