Abstract:
A method is provided for using magnetic nanoparticles to enhance microwave therapies for treating cells and tissues. The nanoparticles are designed to transduce microwave radiation into heat and furthermore, the nanoparticles may include specific tissue targeting and other functionality for enhancing in situ effects. In one embodiment, nanoparticles are introduced into a tissue system and a microwave field is applied. The nanoparticles react to the microwave energy by releasing heat thus heating the tissue and inducing hyperthermia (below 50°C) or thermotherapy (above 50°C). The nanoparticles can be designed for optimal heat production response at specific microwave frequencies and/or ranges of microwave frequencies where these frequencies may span the entire microwave spectrum, namely 300 MHz (3108 Hz) to 300 GHz (31011 Hz).
Abstract:
Textile fibers and other fibrous substrates functionalized with particles are provided for use in the detection of targets of interest by spectroscopic methods. In one embodiment, a substrate is provided that comprises a conformal coating on its surface, wherein the coating comprises a plurality of chemically functional particles that are spectroscopically enhancing. Methods for producing such functionalized textile fibers are also provided. These textiles can be used as platforms for spectroscopic detection, including surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), and surface-enhanced fluorescence (SEF). Functionalized textile fibers for use in the signature detection methods are produced by performing layer-by-layer self-assembly of particles on natural and synthetic textile substrates.
Abstract:
A portable, fully-automated, microchip including a DNA purification region fluidly integrated with a PCR-based detection region is used to detect specific DNA sequences for the rapid detection of bacterial pathogens. Using an automated detection system with integrated microprocessor, pumps, valves, thermocycler and fluorescence detection modules, the microchip is able to purify and detect bacterial DNA by real-time PCR amplification using fluorescent dye. The fully automated detection system is completely portable, making the system ideal for the detection of bacterial pathogens in the field or other point-of-care environments.
Abstract:
A portable, fully-automated, microchip (2) including a DNA purification region (4) fluidly integrated with a PCR-based detection region (6) is used to detect specific DNA sequences for the rapid detection of bacterial pathogens. Using an automated detection system with integrated microprocessor, pumps, valves, thermocycler and fluorescence detection modules, the microchip is able to purify and detect bacterial DNA by real-time PCR amplification using fluorescent dye. The fully automated detection system is completely portable, making the system ideal for detection of bacterial pathogens in the field or other point-of-care environments.
Abstract:
Textile fibers and other fibrous substrates functionalized with particles are provided for use in the detection of targets of interest by spectroscopic methods. In one embodiment, a substrate is provided that comprises a conformal coating on its surface, wherein the coating comprises a plurality of chemically functional particles that are spectroscopically enhancing. Methods for producing such functionalized textile fibers are also provided. These textiles can be used as platforms for spectroscopic detection, including surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), and surface-enhanced fluorescence (SEF). Functionalized textile fibers for use in the signature detection methods are produced by performing layer-by-layer self-assembly of particles on natural and synthetic textile substrates.
Abstract:
A method for detecting target nucleic acids such as SNPs is provided. The method comprises performing a ligase detection reaction (LDR), performing surface enhanced Raman scattering (SERS) on the LDR, and analyzing the outcome of the LDR using analysis and/or quantification of the SERS by detecting an emitted Raman signature. The LDR-SERS method can be used for sensitive and specific detection of any nucleic acid sequence of interest. A microfluidic SERS detection device is also provided. The device comprises electrokinetically active microwells for mixing and concentrating analytes and in which analytes can be quantified. The device can be used for performing the LDR-SERS method in optofluidic chip format.
Abstract:
A method is provided for using magnetic nanoparticles to enhance microwave therapies for treating cells and tissues. The nanoparticles are designed to transduce microwave radiation into heat and furthermore, the nanoparticles may include specific tissue targeting and other functionality for enhancing in situ effects. In one embodiment, nanoparticles are introduced into a tissue system and a microwave field is applied. The nanoparticles react to the microwave energy by releasing heat thus heating the tissue and inducing hyperthermia (below 50°C) or thermotherapy (above 50°C). The nanoparticles can be designed for optimal heat production response at specific microwave frequencies and/or ranges of microwave frequencies where these frequencies may span the entire microwave spectrum, namely 300 MHz (310 8 Hz) to 300 GHz (310 11 Hz).
Abstract:
A method for detecting target nucleic acids such as SNPs is provided. The method comprises performing a ligase detection reaction (LDR), performing surface enhanced Raman scattering (SERS) on the LDR, and analyzing the outcome of the LDR using analysis and/or quantification of the SERS by detecting an emitted Raman signature. The LDR-SERS method can be used for sensitive and specific detection of any nucleic acid sequence of interest. A microfluidic SERS detection device is also provided. The device comprises electrokinetically active microwells for mixing and concentrating analytes and in which analytes can be quantified. The device can be used for performing the LDR-SERS method in optofluidic chip format.