Abstract:
The present invention relates to encapsulated or insulated devices. In certain environments and applications, it is necessary to protect devices from external agents. The present invention achieves this by providing a device comprising a segment of insulating material having an aperture defined therein. An element of active, for example positive temperature coefficient (PTC), material is received within the defined aperture. The element is substantially covered by a first metal layer on one side and a second metal layer on the opposing side. A first layer of insulating material substantially covers the first metal layer and a second layer of insulating material substantially covers the second layer of metal. A first terminal provides an external electrical connection to the first metal layer and a second terminal provides an external electrical connection to the second metal layer. The first terminal is connected to the first metal layer by a conductive interconnect which passes through the first insulating layer and the second terminal is connected to the second metal layer by a conductive interconnect passes through the second insulating layer. Moreover, the invention provides a method for manufacturing devices in a matrix form using conventional PCB techniques to facilitate the mass production of encapsulated devices. Additionally, the resulting components may be used as either leaded or SMT components in either single device or multiple device configurations in both SIP and DIP packages.
Abstract:
Surface-mountable conductive polymer electronic devices include at least one conductive polymer active layer laminated between upper and lower electrodes. Upper and lower insulation layers, respectively, sandwich the upper and lower electrodes. First and second planar conductive terminals are formed on the lower insulation layer. First and second cross-conductors are provided by plated through-hole vias, whereby the cross-conductors connect each of the electrodes to one of the terminals. Certain embodiments include two or more active layers, arranged in a vertically-stacked configuration and electrically connected by the cross-conductors and electrodes in parallel. Several embodiments include at least one cross-conductor having a chamfered or beveled entry hole through the upper insulation layer to provide enhanced adhesion between the cross-conductor and the insulation layer. Several methods for manufacturing the present surface-mountable conductive polymer electronic devices are also provided.
Abstract:
The present invention relates to encapsulated or insulated devices. In certain environments and applications, it is necessary to protect devices from external agents. The present invention achieves this by providing a device comprising a segment of insulating material having an aperture defined therein. An element of active, for example positive temperature coefficient (PTC), material is received within the defined aperture. The element is substantially covered by a first metal layer on one side and a second metal layer on the opposing side. A first layer of insulating material substantially covers the first metal layer and a second layer of insulating material substantially covers the second layer of metal. A first terminal provides an external electrical connection to the first metal layer and a second terminal provides an external electrical connection to the second metal layer. The first terminal is connected to the first metal layer by a conductive interconnect which passes through the first insulating layer and the second terminal is connected to the second metal layer by a conductive interconnect passes through the second insulating layer. Moreover, the invention provides a method for manufacturing devices in a matrix form using conventional PCB techniques to facilitate the mass production of encapsulated devices. Additionally, the resulting components may be used as either leaded or SMT components in either single device or multiple device configurations in both SIP and DIP packages.
Abstract:
Surface-mountable conductive polymer electronic devices include at least one conductive polymer active layer laminated between upper and lower electrodes. Upper and lower insulation layers, respectively, sandwich the upper and lower electrodes. First and second planar conductive terminals are formed on the lower insulation layer. First and second cross-conductors are provided by plated through-hole vias, whereby the cross-conductors connect each of the electrodes to one of the terminals. Certain embodiments include two or more active layers, arranged in a vertically-stacked configuration and electrically connected by the cross-conductors and electrodes in parallel. Several embodiments include at least one cross-conductor having a chamfered or beveled entry hole through the upper insulation layer to provide enhanced adhesion between the cross-conductor and the insulation layer. Several methods for manufacturing the present surface-mountable conductive polymer electronic devices are also provided.
Abstract:
Surface-mountable conductive polymer electronic devices include at least one conductive polymer active layer laminated between upper and lower electrodes. Upper and lower insulation layers, respectively, sandwich the upper and lower electrodes. First and second planar conductive terminals are formed on the lower insulation layer. First and second cross-conductors are provided by plated through-hole vias, whereby the cross-conductors connect each of the electrodes to one of the terminals. Certain embodiments include two or more active layers, arranged in a vertically-stacked configuration and electrically connected by the cross-conductors and electrodes in parallel. Several embodiments include at least one cross-conductor having a chamfered or beveled entry hole through the upper insulation layer to provide enhanced adhesion between the cross-conductor and the insulation layer. Several methods for manufacturing the present surface-mountable conductive polymer electronic devices are also provided.