Abstract:
Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs- distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
Abstract:
Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs- distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
Abstract:
Dynamic range of a differential pixel is enhanced by injecting, synchronously or asynchronously, a fixed compensating offset (ΔV) into a differential signal capacitor whenever magnitude of the differential signal across the capacitor exceeds a predetermined value. The number (N) of ΔV offsets made is counted. Effective differential signal capacitor voltage V(t) = Vo + N-ΔV, where Vo is capacitor voltage. Differential pixel signal/noise ratio is increased by dynamically maximizing operational amplifier gain A G for each differential pixel.
Abstract translation:每当电容器两端的差分信号的大小超过预定值时,通过将固定的补偿偏移(ΔV)同步或异步地注入差分信号电容器来增强差分像素的动态范围。 对所做的ΔV偏移数(N)进行计数。 有效的差分信号电容电压V(t)= Vo + N-V,其中Vo是电容电压。 通过动态地最大化每个差分像素的运算放大器增益A SUB来提高差分像素信号/噪声比。
Abstract:
Objects may be recognized through various levels of recognition using a combination of sensors and algorithms such as described herein. In order to perform recognition, a depth distance or range is obtained for each surface region in a plurality of surface regions that form a viewable surface of the object that is to be recognized. An identification feature of at least a portion of the object is determined using the depth information for the plurality of surface regions.
Abstract:
A light-generated input interface is provided using a combination of components that include a projector and a sensor. The projector displays an image corresponding to an input device. The sensor can be used to detect selection of input based on contact by a user-controlled object with displayed regions of the projected input device. An intersection of a projection area and an active sensor area on a surface where the input device is to be displayed is used to set a dimension of an image of the input device.
Abstract:
A technique is provided for removing blurring from an image captured by an imaging device. The imaging device may include a lens and an imaging medium comprised of a plurality of imaging pieces. According to an embodiment, a distance is determined between individual imaging pieces of the imaging medium and a region on the target object that corresponds to the respective individual imaging piece. The image of the target object is captured on the imaging medium. Blurring is removed from the captured image using the distances identified for the individual imaging pieces.
Abstract:
Effective differential dynamic range and common mode rejection in a differential pixel detector are enhanced by capturing and isolating differential detector charge output before using common mode reset to avoid detector saturation due to common mode components of optical energy to be detected. Differential charge is stored into an integration capacitor associated with an operational amplifier coupled to receive as input the differential detector outputs. Common mode reset is achieved by resetting storage capacitors coupled to the outputs of the differential detector at least once within an integration time T before storage potential exceeds a saturation voltage Vsat for the photodetector.
Abstract:
An RGB-Z sensor is implementable on a single IC chip. A beam splitter such as a hot mirror receives and separates incoming first and second spectral band optical energy from a target object into preferably RGB image components and preferably NIR Z components. The RGB image and Z components are detected by respective RGB and NIR pixel detector array regions, which output respective image data and Z data. The pixel size and array resolutions of these regions need not be equal, and both array regions may be formed on a common IC chip. A display using the image data can be augmented with Z data to help recognize a target object. The resultant structure combines optical efficiency of beam splitting with the simplicity of a single IC chip implementation. A method of using the single chip red, green, blue, distance (RGB-Z) sensor is also disclosed.
Abstract:
Effective differential dynamic range in a differential pixel detector (70) is increased by avoiding saturation effects due to common mode contribution in optical energy to be detected. Photocurrent generated by each photodetector (Da) pair is directly integrated by an associated capacitor (Ca) over an integration time T. Within time T, before either integrated capacitor voltage reaches Vsat for the photodetector, at least one of the capacitors is reset to a voltage such that the desired differential detector signal is still determinable. Reset may be generated externally or internally to the differential pixel detector.
Abstract:
A projection array is provided that comprises a plurality of discrete projection elements. An image array is obtained of a scene with the light projected onto it that is coded using the projection array. Correspondence information is determined for each element in the image array, where the correspondence information can be used to determine which of the plurality of elements in the projection array corresponds to a particular image element. The determination of correspondence information for each element in the image array can be made independently of correspondence information for other elements in the image array.