Abstract:
A glycoconjugate for use in treating or preventing an HIV infection or AIDS, wherein the glycoconjugate comprises an oligosaccharide group which is linked to a carrier protein, wherein the oligosaccharide group is of formula (I): wherein: M3 is a modified mannose unit; each M2 is the same or different and represents a mannose unit or a modified mannose unit; - M1 represents a mannose unit or a modified mannose unit, and the oligosaccharide moiety is linked to the carrier protein via M1; p is 0, or 1; q is 0 or 1; S1 is a saccharide unit or a modified saccharide unit; - r, s and t are zero or an integer from 1 to 5, wherein at least two of r, s and t are zero; wherein the or each modified mannose unit or modified saccharide unit is a mannose unit or saccharide unit having one or more modifications, the or each modification being independently selected from modifications A and B, wherein: modification A is replacement of a hydrogen atom of the mannose unit or saccharide unit with a C1 -3 alkyl group optionally substituted with a hydroxyl group; and modification B is replacement of a hydroxyl group of the mannose unit or saccharide unit with a hydrogen atom.
Abstract:
The invention provides chimeric molecules that are catalytic antagonists of a target molecule. The catalytic antagonists of this invention preferably comprise a targeting moiety attached to an enzyme that degrades the molecule specifically bound by the targeting moiety. The catalytic antagonists of this invention thus bind to a target recognized by the targeting moiety (e.g., a receptor) the enzyme component of the chimera then degrades all or part of the target. This typically results in a reduction or loss of activity of the target and release of the chimeric molecule. The chimeric molecule is then free to attack and degrade another target molecule.
Abstract:
Compounds which are trehalose-6-phosphate or trehalose-6-phosphonate precursors of formula (I) or agriculturally acceptable salts thereof are provided: (I) The compounds are useful in increasing starch production in plants.
Abstract:
The present invention relates to a chemically modified mutant protein including a cysteine residue substituted for a residue other than cysteine n a precursor protein, the substituted cysteine residue being subsequently modified by reacting the cysteine residue with a glycosylated thiosulfonate. Also a method of producing the chemically modified mutant protein is provided. The present invention also relates to a glycosylated methanethiosulfonate. Another aspect of the present invention is a method of modifying the functional characteristics of a protein including providing a protein and reacting the protein with a glycosylated methanethiosulfonate reagent under conditions effective to produce a glycoprotein with altered functional characteristics as compared to the protein. In addition, the present invention relates to methods of determining the structure-function relationships of chemically modified mutant proteins. The present invention also relates to synthetic methods for producing thio-glycoses, the thio-glycoses so produced, and to methods for producing glycodendrimer reagents.
Abstract:
The present invention is directed to glyodendrimeric proteases, composition with glycodendrimeric proteases and methods for inhibiting adhesion binding in microorganisms by contacting microorganisms with a glycodendrimeric protease or a composition with a glycodendrimeric protease. The invention may be used to treat patients in need of treatment.
Abstract:
The invention provides chimeric molecules that are catalytic antagonists of a target molecule. The catalytic antagonists of this invention preferably comprise a targeting moiety attached to an enzyme that degrades the molecule specifically bound by the targeting moiety. The catalytic antagonists of this invention thus bind to a target recognized by the targeting moiety (e.g., a receptor) the enzyme component of the chimera then degrades all or part of the target. This typically results in a reduction or loss of activity of the target and release of the chimeric molecule. The chimeric molecule is then free to attack and degrade another target molecule.
Abstract:
The present invention relates to a chemically modified mutant protein including a cysteine residue substituted for a residue other than cysteine n a precursor protein, the substituted cysteine residue being subsequently modified by reacting the cysteine residue with a glycosylated thiosulfonate. Also a method of producing the chemically modified mutant protein is provided. The present invention also relates to a glycosylated methanethiosulfonate. Another aspect of the present invention is a method of modifying the functional characteristics of a protein including providing a protein and reacting the protein with a glycosylated methanethiosulfonate reagent under conditions effective to produce a glycoprotein with altered functional characteristics as compared to the protein. In addition, the present invention relates to methods of determining the structure-function relationships of chemically modified mutant proteins. The present invention also relates to synthetic methods for producing thio-glycoses, the thio-glycoses so produced, and to methods for producing glycodendrimer reagents.
Abstract:
The present invention relates to a chemically modified mutant protein including a cysteine residue substituted for a residue other than cysteine n a precursor protein, the substituted cysteine residue being subsequently modified by reacting the cysteine residue with a glycosylated thiosulfonate. Also a method of producing the chemically modified mutant protein is provided. The present invention also relates to a glycosylated methanethiosulfonate. Another aspect of the present invention is a method of modifying the functional characteristics of a protein including providing a protein and reacting the protein with a glycosylated methanethiosulfonate reagent under conditions effective to produce a glycoprotein with altered functional characteristics as compared to the protein. In addition, the present invention relates to methods of determining the structure-function relationships of chemically modified mutant proteins. The present invention also relates to synthetic methods for producing thio-glycoses, the thio-glycoses so produced, and to methods for producing glycodendrimer reagents.
Abstract:
The present invention relates to a chemically modified mutant protein including a cysteine residue substituted for a residue other than cysteine n a precursor protein, the substituted cysteine residue being subsequently modified by reacting the cysteine residue with a glycosylated thiosulfonate. Also a method of producing the chemically modified mutant protein is provided. The present invention also relates to a glycosylated methanethiosulfonate. Another aspect of the present invention is a method of modifying the functional characteristics of a protein including providing a protein and reacting the protein with a glycosylated methanethiosulfonate reagent under conditions effective to produce a glycoprotein with altered functional characteristics as compared to the protein. In addition, the present invention relates to methods of determining the structure-function relationships of chemically modified mutant proteins. The present invention also relates to synthetic methods for producing thio-glycoses, the thio-glycoses so produced, and to methods for producing glycodendrimer reagents.
Abstract:
Compounds which inhibit Wza-mediated polysaccharide transport are useful in the prevention or treatment of bacterial infection, in particular of E. coli infection. The compounds are typically cyclic oligosaccharides such as cyclodextrins, which bear positively charged functional groups at the primary carbon position.