Abstract:
Methods and systems for assessing pulmonary gas exchange and/or alveolar-capillary barrier status include using spin echo pulse techniques to generate at least one 3-D MRI image of 129 Xe dissolved in the red blood cell (RBC) and barrier compartments in the gas exchange regions of the lungs of a patient.
Abstract translation:用于评估肺气体交换和/或肺泡毛细血管屏障状态的方法和系统包括使用自旋回波脉冲技术产生溶解在红细胞(RBC)中的至少一个129D x Xe的MRI图像 )和患者肺的气体交换区域中的阻隔隔室。
Abstract:
A resilient multi-layer container is configured to receive a quantity of hyperpolarized noble fluid such as gas and includes a wall with at least two layers, a first layer with a surface which minimizes contact-induced spin-relaxation and a first or second layer which is substantially impermeable to oxygen. The container is especially suitable for collecting and transporting He. The resilient container can be formed of material layers which are concurrently responsive to pressure such as polymers, deuterated polymers, or metallic films. The container can include a capillary stem and/or a port or valve isolation means to inhibit the flow of gas from the main volume of the container during transport. The resilient container can be configured to directly deliver the hyperpolarized noble gas to a target interface by deflating or collapsing the inflated resilient container. In addition, single layer resilient containers with T1's of above 4 hours for Xe and above 6 hours for He include materials with selected relaxivity values. In addition, a bag with a port fitting or valve member and one or more of a capillary stem and port isolation means is configured to minimize the depolarizing effect of the container valve or fitting(s). Also disclosed is a method for determining the gas solubility in an unknown polymer or liquid using the measured relaxation time of a hyperpolarized gas.
Abstract:
Methods of extracting and removing hyperpolarized gas from a container include introducing an extraction fluid into the container to force the hyperpolarized gas out of an exit port. The hyperpolarized gas is forced out of the container separate and apart from the extraction fluid. Alternatively, if the fluid is a gas, a portion of the gas is mixed with the hyperpolarized gas to form a sterile mixed fluid product suitable for introduction to a patient. An additional method includes engaging a gas transfer source such as a syringe to a transport container and pulling a quantity of the hyperpolarized gas out of the container in a controlled manner. Another method includes introducing a quantity of liquid into a container and covering at least one predetermined internal surface or component with the liquid to mask the surfaces and keep the hyperpolarized gas away from the predetermined internal surface, thereby inhibiting any depolarizing affect from same. Examples of surfaces or components suitable for masking include valves, seals, and the like. Yet another extraction method includes expanding a resilient member inside the container to force the hyperpolarized gas to exit therefrom. Containers include a resilient member positioned in fluid communication with the hyperpolarized gas in the container. An additional container includes inlet and outlet ports in fluid communication with the chamber and positioned on opposing sides or end portions of the container. Another container includes a port configured to receive a portion of a syringe therein. An additional aspect of the disclosure relates to calibration methods and apparatus for identifying the hyperpolarization status of the gas.
Abstract:
Methods of collecting, thawing, and extending the useful polarized life of frozen polarized gases include heating a portion of the flow path and/or directly liquefying the frozen gas during thawing. A polarized noble gas product with an extended polarized life product is also included. Associated apparatus such as an accumulator and heating jacket for collecting, storing, and transporting polarized noble gases include a secondary flow channel which provides heat to a portion of the collection path during accumulation and during thawing.
Abstract:
Methods for imaging a target cell, tissue, or organ in a subject. In some embodiments, the methods include the steps of (a) administering to the subject a contrast agent that includes a paramagnetic or superparagmanetic material and a targeting moiety that targets the contrast agent to the cell, tissue, or organ; (b) introducing into the target cell, tissue, or organ, or into the vicinity thereof, a hyperpolarized gas; and (c) imaging the target cell, tissue, or organ by detecting the presence of the contrast agent in, on, or near the target cell, tissue, or organ. Also provided are methods for screening for metastasis of a tumor and/or a cancer to the lung of a subject, methods for imaging a cavity in a subject, methods for imaging a target cell, tissue, or organ in a cavity, compositions for performing the disclosed methods, and systems and kits that include the disclosed compositions and/or reagents for performing the disclosed methods.
Abstract:
Methods of the present invention obtain dynamic data sets of an NMR spectroscopy signal of polarized 129 Xe in a selected structure, environment, or system. The signal data can be used to evaluate: (a) the physiology of a membrane or tissue; (b) the operational condition or function of a body system or portion thereof (when at rest or under stimulation); and/or (c) the efficacy of a therapeutic treatment used to treat a diagnosed disorder, disease, or condition. Thus, the present invention provides methods for screening and/or diagnosing a respiratory, cardiapulmonary disorder or disease such as chronic heart failure, and/or methods for monitoring the efficacy of therapeutics administered to subject to treat the disorder or disease.
Abstract:
A method of screening for pulmonary embolism uses gaseous phase polarized Xe-129 which is injected directly into the vasculature of a subject. The gaseous Xe-129 can be delivered in a controlled manner such that the gas substantially dissolves into the vasculature proximate to the injection site. The injectable formulation of polarized Xe-129 gas is presented in small quantities of (preferably isotopically enriched) hyperpolarized Xe-129 and can provide high-quality vasculature MRI images or NMR spectroscopic signals with clinically useful signal resolution or intensity. The direct injection of small quantities of gas at particular sites along the vasculature targets specific target regions to provide increased signal intensity NMR images. The disclosure also includes related methods directed to other diagnostic vasculature regions physiological and conditions. Associated delivery and dispensing systems and methods, containers, and quantitative formulations of the polarized gas are also described.
Abstract:
An in vivo non-invasive method for detecting and/or diagnosing a pathological condition using hyperpolarized Xe spectroscopy is disclosed. Generally stated, the method includes determining the magnitude of spectral peaks which represent particular chemical shifts and comparing the observed magnitudes to those of healthy individuals. Preferably, the method includes subtracting substantial backgrounds and accounting for secondary conditions such as the polarization of hyperpolarized gas administered. Additionally, a quantitative analysis of hyperpolarized Xe spectra advantageously allows a physician to establish the extent of disease progression. Advantageously, this method can be used regardless of the method of hyperpolarized Xe administration.
Abstract:
Hyperpolarizers which produce hyperpolarized noble gases include one or more on-board NMR monitoring coils configured to monitor the polarization level of the hyperpolarized gas at various production points in the polarized gas production cycle. A dual symmetry NMR coil is positioned adjacent the optical pumping cell and is in fluid communication with a secondary reservoir in fluid communication with the polarized gas dispensing or exit flow path. This can measure the post-thaw polarization of the gas "on-board" the polarizer. Alternately or additionally, a NMR monitoring coil is assembled to the exit port portion of the optical pumping cell to give a more reliable indication of the polarization level of the gas as it flows out of the gas optical pumping cell. Another NMR monitoring coil can be positioned in a cryogenic bath adjacent a quantity of frozen polarized Xe to determine the polarization level of the frozen gas.