Abstract:
Carbon nanotube columns each comprising carbon nanotubes can be utilized as electrically conductive contact probes. The columns can be grown, and parameters of a process for growing the columns can be varied while the columns grow to vary mechanical characteristics of the columns along the growth length of the columns. Metal can then be deposited inside and/or on the outside of the columns, which can enhance the electrical conductivity of the columns. The metalized columns can be coupled to terminals of a wiring substrate. Contact tips can be formed at or attached to ends of the columns. The wiring substrate can be combined with other electronic components to form an electrical apparatus in which the carbon nanotube columns can function as contact probes.
Abstract:
Carbon nanotube columns each comprising carbon nanotubes can be utilized as electrically conductive contact probes. The columns can be grown, and parameters of a process for growing the columns can be varied while the columns grow to vary mechanical characteristics of the columns along the growth length of the columns. Metal can then be deposited inside and/or on the outside of the columns, which can enhance the electrical conductivity of the columns. The metalized columns can be coupled to terminals of a wiring substrate. Contact tips can be formed at or attached to ends of the columns. The wiring substrate can be combined with other electronic components to form an electrical apparatus in which the carbon nanotube columns can function as contact probes.
Abstract:
Probe array structures and methods of making probe array structures are disclosed. A plurality of electrically conductive elongate contact structures disposed on a first substrate can be provided. The contact structures can then be partially encased in a securing material such that ends of the contact structures extend from a surface of the securing material. The exposed portions of the contact structures can then be captured in a second substrate.
Abstract:
Probe array structures and methods of making probe array structures are disclosed. A plurality of electrically conductive elongate contact structures disposed on a first substrate can be provided. The contact structures can then be partially encased in a securing material such that ends of the contact structures extend from a surface of the securing material. The exposed portions of the contact structures can then be captured in a second substrate.
Abstract:
Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.
Abstract:
Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.