Abstract:
A dual-pump fluid distribution system that includes a first pump having an inlet and an outlet, and configured to supply a first flow of fluid, and a second pump having an inlet and an outlet, and configured to supply a second flow of fluid. In an embodiment, a bypass flow valve with a four-way hydraulic bridge is configured to initiate the switch between single-pump mode and dual-pump mode based on fluid flow demand. The bypass flow valve is configured such that the position of the bypass flow valve member relative to the four-way hydraulic bridge operates a pump selector valve. In an embodiment, the pump selector valve has a valve member, a biasing element, and a pressure switching port, and is configured such that the position of the valve member determines whether the second flow of fluid is combined with the first flow of fluid.
Abstract:
A fuel pressure regulation system is provided. The fuel pressure regulation system includes a supply arrangement for supplying an outlet flow. A primary metering circuit is provided, an inlet of which receives a first portion of the outlet flow of the supply arrangement, the primary metering circuit comprising a fuel metering valve and a primary pressure regulator. The primary pressure regulator is connected to an outlet of the fuel metering valve. The system also includes at least one secondary metering circuit. The primary pressure regulator is operably connected to the at least one secondary metering circuit to sense a pressure of the at least one secondary metering circuit. The system also includes a bypass regulator connected in parallel with the primary metering circuit and the least one secondary metering circuit such that an inlet of the bypass regulator receives a second portion of the outlet flow of the supply arrangement.
Abstract:
A split control unit in a distributed flow unit includes a flow inlet configured to receive a fuel flow, a first manifold having flow lines to supply fuel to one or more primary nozzles, and a second manifold having flow lines to supply fuel to one or more secondary nozzles. In an embodiment, the second manifold is in fluid communication with the flow inlet. A metering valve has a first port in fluid communication with the flow inlet and with the second manifold. The metering valve is configured to supply a metered fuel flow to the first manifold. A flow passage is in fluid communication with, and runs between, a flow line of the first manifold and a flow line of the second manifold to allow for a continuous cooling flow in the second manifold when all of the one or more secondary nozzles are closed.
Abstract:
A fuel split control arrangement is provided. The arrangement includes a staged cooling flow control valve and cooling check valve. The staged cooling flow control valve and cooling check valve is connected between the primary and secondary tips of a nozzle in a turbine engine. The staged cooling flow control valve and cooling check valve includes a valve member arrangement operable to prevent fuel flow from the secondary fuel supply manifold to the secondary tip and simultaneously allow fuel flow from the secondary fuel supply manifold to the primary tip such that the primary tip receives fuel flow from both the secondary fuel supply manifold and the primary fuel supply manifold.
Abstract:
A dual-pump fluid distribution system that includes a first pump having an inlet and an outlet, and configured to supply a first flow of fluid, and a second pump having an inlet and an outlet, and configured to supply a second flow of fluid. In an embodiment, a bypass flow valve with a four-way hydraulic bridge is configured to initiate the switch between single-pump mode and dual-pump mode based on fluid flow demand. The bypass flow valve is configured such that the position of the bypass flow valve member relative to the four-way hydraulic bridge operates a pump selector valve. In an embodiment, the pump selector valve has a valve member, a biasing element, and a pressure switching port, and is configured such that the position of the valve member determines whether the second flow of fluid is combined with the first flow of fluid.
Abstract:
A fluid distribution system includes a boost (102) providing a fluid flow, and a fluid metering system (108) downstream of the boost supply. The fluid metering system (108) supplies fluid to a downstream device. A main fluid pump (106)supplies at least a portion of the fluid flow to the fluid metering system (108). A shut-off valve (114) is positioned upstream of a main fluid pump (106) inlet. An actuation system (110) is positioned downstream of the boost supply (102). The actuation system (110) supplies fluid to one or more hydraulically-operated devices. An actuation pump (104) supplies at least a portion of the fluid flow to the fluid metering system (108) and to the actuation system (110). A first valve (116) is positioned between the actuation pump (104) and the fluid metering system (108). The first valve (104) and the shut-off valve (114) are operable to switch between the main fluid pump (106) and the actuation pump (104) as a source of fluid supply to the fluid metering system (108).