Abstract:
The present invention provides a process for preparing higher-value products from carbonaceous feedstocks. The process includes converting carbonaceous feedstock in a hydromethanation reactor to a methane-enriched raw product stream, converting the methane-enriched raw product stream to a methanol synthesis feed gas, then converting the methanol synthesis feed gas to higher-value products such as methanol and dimethyl ether.
Abstract:
The present invention relates to processes for hydromethanating a carbonaceous feedstock to a methane product stream and electrical power, in which heat energy from the hot methane-enriched synthesis gas is used to generate a dry saturated steam stream, the dry saturated steam stream is converted into a superheated steam stream via pressure drop for feeding into the hydromethanation reactor to satisfy the steam demand of the hydromethanation reaction, and heat generated from a downstream gas methanation processing is recovered to produce a superheated process steam stream which is used to generate the electric power.
Abstract:
The present invention relates to processes for hydromethanating a carbonaceous feedstock to a hot methane-enriched synthesis gas, in which heat energy from the hot methane-enriched synthesis gas is used to generate a dry saturated steam stream, and the dry saturated steam stream is converted into a superheated steam stream via pressure drop for feeding into the hydromethanation reactor to satisfy the steam demand of the hydromethanation reaction.
Abstract:
The present invention relates to processes for hydromethanating a nickel-containing (and optionally vanadium-containing) carbonaceous feedstock while recovering at least a portion of the nickel content (and optionally vanadium content) originally present in the carbonaceous feedstock.
Abstract:
The present invention relates to processes and apparatuses for generating light olefins, methane and other higher-value gaseous hydrocarbons from "liquid" heavy hydrocarbon feedstocks.
Abstract:
The present invention relates to a steam-integrated and heat-integrated process for preparing gaseous products, and in particular methane and/or other value added gaseous products such as hydrogen, via the hydromethanation of non-gaseous carbonaceous feedstocks in the presence of steam, carbon monoxide, hydrogen, oxygen and a hydromethanation catalyst.
Abstract:
The present invention relates to a 2-mode processes for preparing gaseous products, and in particular a hydrogen product stream, via the hydromethanation of carbonaceous feed-stocks in the presence of steam, carbon monoxide, hydrogen and a hydromethanation catalyst in a first mode, and a partial oxidation of methane in a second mode.
Abstract:
The present invention relates to processes for preparing gaseous products, and in particular, methane via the catalytic gasification of carbonaceous feedstocks in the presence of steam and an oxygen-rich gas stream. The processes comprise using at least one catalytic methanator to convert carbon monoxide and hydrogen in the gaseous products to methane and do not recycle carbon monoxide or hydrogen to the catalytic gasifier.
Abstract:
Systems to convert a carbonaceous feedstock into a plurality of gaseous products are described. The systems include, among other units, four separate gasification reactors for the gasification of a carbonaceous feedstock in the presence of an alkali metal catalyst into the plurality of gaseous products including at least methane. Each of the gasification reactors may be supplied with the feedstock from a single or separate catalyst loading and/or feedstock preparation unit operations. Similarly, the hot gas streams from each gasification reactor may be purified via their combination at a heat exchanger, acid gas removal, or methane removal unit operations. Product purification may comprise trace contaminant removal units, ammonia removal and recovery units, and sour shift units.
Abstract:
Processes for the catalytic conversion of a carbonaceous composition into a gas stream comprising methane are provided. In addition, the processes provide for the generation of a hydrogen-enriched gas stream and, optionally, a carbon monoxide-enriched gas stream, which can be mixed or used separately as an energy source for subsequent catalytic gasification processes.