Abstract:
The effect of laser stimulation, e.g., R:GEN, of the RPE and its impact on MMPs and RAAS pathways are used to guide patient therapies. Certain biomarkers, namely MMPs, TIMPs, and components associated with RAAS, are effective indicators of healing response levels generated by the patients undergoing the therapy. An eye disease is diagnosed in a patient and a first biomarker sample is obtained from a biomatrix, e.g., patient's blood in containers with protease inhibitors. An initial subthreshold laser treatment is then performed on the eye. By monitoring the presence, amount, and relative levels of one or more of the above biomarkers as the patient heals, it is determined when the patient's body has sufficiently responded to the previous treatment, such that retreatment may be appropriate. The present disclosure demonstrates effective treatment of eye diseases, e.g., dry age-related macular degeneration, which utilize laser treatment alone or in combination with other treatments.
Abstract:
The disclosure provides a rapidly deployable nanoscale biodegradable system using hydroxypropyl beta cyclodextrin based combination product. Cyclodextrin is an amphiphilic polymer suitable to develop an agnostic barrier blocking pathogenic microbes that has localized on the mucocutaneous lining of the conjunctiva, mouth and nose, lung, or gastrointestinal tract. The cyclodextrin may bind the viral particles and/or disrupt viral entry mechanisms by removing cholesterol from viral particles to reduce infectivity. Cyclodextrins also may facilitate removal of the viral cholesterol molecules, thus rendering them less viable. Cyclodextrin activity may be further enhanced when used in combination with certain minerals and/or antioxidant compounds.
Abstract:
Apparatus, systems, and devices are described that utilize an adjustable biological tissue cutting handpiece that is based on selectable settings. The biological tissue cutting handpiece includes a cutter tip that allows multiple duty cycles as well as multiple port configurations. For example, when working next to the retina, the port could be adjusted to be a smaller size, allowing delicate membrane dissection. When working near or in less sensitive tissue, e.g. the center of the eye, the port could be wide open. The port aperture size can be independent of cut speed, allowing a surgeon to work at high speed both next to the retina and away from the retina. High speeds have been shown to have increased tissue (e.g., vitreous) removal, e.g., in 25 and 23-gauge instruments. Duty cycle is not necessarily dependent on cut speed, allowing high cutter performance and varied flow characteristics.
Abstract:
A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a central opening in the area of the metal traces. A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a soft polymer filling an attachment point. A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a hump to avoid a touching of the flexible electrode array and the optic nerve.
Abstract:
A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a central opening in the area of the metal traces. A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a soft polymer filling an attachment point. A flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a hump to avoid a touching of the flexible electrode array and the optic nerve.
Abstract:
The disclosure relates to a flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and at least one support embedded in said array. The disclosure further relates to a flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a folded flexible circuit cable connecting the electrode array with an interconnection pad. The disclosure further relates to a method of making a flexible circuit electrode array comprising: depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array, embedding a support at least in the base layer, top layer or between the base and top layer, and/or folding a flexible circuit cable at least once connecting the electrode array with an interconnection pad the array.
Abstract:
A critical element of a retinal prosthesis is the stimulating electrode array, which is placed in close proximity to the retina. It is via this interface that a retinal prosthesis electrically stimulates nerve cells to produce the perception of light. The impedance load seen by the current driver consists of the tissue resistance and the complex electrode impedance. The results show that the tissue resistance of the retina is significantly greater than that of the vitreous humor in the eye. Circuit models of the electrode-retina interface are used to parameterize the different contributors to the overall impedance.
Abstract:
Micro check valves having a free-floating member for controlling flow of fluid in microfluidic and biomedical applications and methods of fabrication. A micro check valve includes a valve seat, a valve cap that contacts the valve seat and an untethered floating member that can move between the valve seat and the valve cap. Certain micro check valves have zero cracking pressure and no reverse leakage. Certain other valves may be configured to permit flow of fluid within a pressure range. The floating member can be solid or define an orifice, and the valve seat can have one or two levels. Valves can be configured to allow fluid to flow when the floating member is pushed by fluid against the valve cap or against the valve seat. The valve seat may be silicon or another material that is compatible with micromachining processes, and the valve cap and the floating member may be a polymer such as Parylene.
Abstract:
An apparatus and method for retinal stimulation are shown. The apparatus comprises an implantable and external portion, and the method comprises varied parameters, including frequency, pulse width, and pattern of pulse trains to determine a stimulation pattern and visual perception threshold.
Abstract:
Microelectrode assemblies and related methods are disclosed for bio-stimulating and/or bio-sensing a target tissue. The assemblies can include a two-side substrate, an array of microelectrodes, each of the microelectrodes including a nano-wire embedded within the substrate and extending from a proximal end to a distal end and through the substrate, each nano-wire having a diameter preferably less than 1 μm. The substrate can include portions made of nano-porous material(s) through which the microelectrodes pass. The substrate with the embedded nano-wires can effectively be fluid impermeable. The proximal ends of the nano-wires can be adapted to be connected to an electronic device and the distal ends are adapted to be disposed in a biological environment for bio- stimulating a target tissue and/or bio-sensing activities of the target tissue. Suitable alloys such as platinum, platinum-iridium, and/or other noble-metal-alloyed compositions can be used for the nano-wires.