Abstract:
It is critical in an inductively linked medical implant, such as a visual prosthesis or other neural stimulator, to adjust the external coil (4) to a position to maximize communication between the external coil and internal coil. Converting the signal strength to a signal easily discernible by a clinician, preferably an audible tone, facilitates the adjustment of the external coil to a preferred position.
Abstract:
The invention is a device and method for connecting a hermetic package to a flexible circuit such as for an electrode array in an implantable device. Attaching metal pads on a flexible circuit to metal pads on a hermetic device by conductive adhesive is known. A smooth metal, such as platinum, does not bond well to conductive epoxy. The invention provides a roughened surface, such as by etching or by applying high surface area platinum gray, to improve adhesion to platinum or other metal pads.
Abstract:
An electrode array attached to neural tissue, such as the retina, necessarily has graded pressure exerted on the tissue, with higher pressure near the attachment point. Greater pressure improves contact between the electrodes and neural tissue while too much pressure may damage neural tissue. Hence it is advantageous to obtain equal pressure across the array field. In the present invention multiple and selective attachment points are provided on an electrode array allowing a surgeon to select the attachment points providing the best electrode tissue contact.
Abstract:
The present invention relates to a process for cathodic protection of electrode or electrode materials wherein negative bias is applied on the electrode, the negative bias is obtained by asymmetric current pulse. The asymmetric current pulse is obtained by performing negative phase with higher amplitude. The asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The asymmetric current pulse is obtained by performing negative phase with higher amplitude and with wider pulse width than that of the anodic phase. The present invention further relates to a process for cathodic protection of electrode or electrode materials, wherein negative bias is applied on the electrode, wherein the negative bias is obtained by asymmetric current pulse, wherein the asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The wider pulse width is obtained by pulse trains.
Abstract:
The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.
Abstract:
The present invention provides an implantable electrode with increased stability having a clustered structure wherein the surface of the electrode is covered with a material comprising openings which are filled with sticks or posts. The present invention provides an implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying a polymer layer on the metal layer; applying photoresist layer on the polymer layer; patterning the photoresist layer providing openings; electroplating the openings with metal; and removing the photoresist layer.
Abstract:
An apparatus and method for retinal stimulation are shown. The apparatus comprises an implantable and external portion, and the method comprises varied parameters, including frequency, pulse width, and pattern of pulse trains to determine a stimulation pattern and visual perception threshold.
Abstract:
An improved platinum and method for manufacturing the improved platinum wherein the platinum having a fractal surface coating of platinum, platinum gray, with a increase in surface area of at least 5 times when compared to shiny platinum of the same geometry and also having improved resistance to physical stress when compared to platinum black having the same surface area. The process of electroplating the surface coating of platinum gray comprising plating at a moderate rate, for example at a rate that is faster than the rate necessary to produce shiny platinum and that is less than the rate necessary to produce platinum black. Platinum gray is applied to manufacture a fuel cell and a catalyst.
Abstract:
The present invention is a method of neural stimulation and more specifically an improved method of providing flexible video/image possessing in a visual prosthesis by providing downloadable video filters. In a visual prosthesis, the input video image will, for the foreseeable future, be higher resolution than the output stimulation of the retina, optic nerve or visual cortex. This is due to limits of electrode array technology and the rapid advancement of video camera technology. It is therefore, advantageous to apply video processing algorithms (filters) to help provide the most useful information to the lower resolution electrode array. Different filters are more effective in different environments and for different subjects. Furthermore, filters will continue to improve over time. Examples of situation dependent filters include reverse image, contrast increasing, edge detection, segmentation using chromatic information and motion detection. Filters loaded in the video processing unit may be selected dynamically to suit the situation or the user's preference. It is therefore advantageous to provide flexibility in applying filters. However, it is also important to maintain the security necessary for a medical device. The present invention provides for an external (not implanted) video processing unit with downloadable video filters.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device of the present invention includes an eclectically non-conductive bass including electrically conductive vias through the substrate. A circuit is flip-chip bonded to a subset of the vias. A second circuit is wire bonded to another subset of the vias. Finally, a cover is bonded to the substrate such that the cover, substrate and vias form a hermetic package.