Abstract:
An up-drawing continuous casting apparatus includes a holding furnace that holds molten metal, a shape determining member that is arranged near a molten metal surface of the molten metal held in the holding furnace, and that determines a sectional shape of a casting by the molten metal passing through the shape determining member, and a cooling portion that cools the molten metal that has passed through the shape determining member. The shape determining member includes, on a main surface on the molten metal surface side, at least one of a protruding portion that protrudes from the main surface, or a recessed portion that is recessed from the main surface.
Abstract:
A molten alloy solidification analyzing method of the invention is characterized in that the amount of change in fraction solid is calculated based on the solidification rate of molten alloy and the solidification rate parameter that is a parameter for evaluating the influence of the solidification rate on solidification of the molten alloy, according to the fraction solid. By conducting such a simulation that takes into consideration the supercooling, a highly accurate solidification analysis is relatively easily performed for various molten alloys.
Abstract:
An up-drawing continuous casting apparatus includes a holding furnace which holds molten metal, a guide-out member which guides the molten metal out from a surface of the molten metal held in the holding furnace, a shape determining member which is arranged to adjoin the surface of the molten metal and allows the molten metal guided out by the guide-out member to pass through the shape determining member to define a shape of a cross section of a casting, a cooling portion which cools the molten metal after the molten metal passes through the shape determining member, and an impact imparting portion which imparts an impact to the guide-out member or the casting.
Abstract:
An oil recovery part (20A, 20B) for guiding oil to an inner side of a peripheral wall of a cylinder head (2) is provided at a front wall upper end of the cylinder head (2), the oil leaking from a concave bearing (3a, 3b) that supports a camshaft (8, 9) provided at a forefront end of a cam housing (3).
Abstract:
An oil recovery part (20A, 20B) for guiding oil to an inner side of a peripheral wall of a cylinder head (2) is provided at a front wall upper end of the cylinder head (2), the oil leaking from a concave bearing (3a, 3b) that supports a camshaft (8, 9) provided at a forefront end of a cam housing (3).
Abstract:
An up-drawing continuous casting apparatus includes a holding furnace that holds molten metal, a shape determining member that is arranged near a molten metal surface of the molten metal held in the holding furnace, and that determines a sectional shape of a casting by the molten metal passing through the shape determining member, and a cooling portion that cools the molten metal that has passed through the shape determining member. The shape determining member includes, on a main surface on the molten metal surface side, at least one of a protruding portion that protrudes from the main surface, or a recessed portion that is recessed from the main surface.
Abstract:
An up-drawing continuous casting apparatus includes a holding furnace that holds molten metal; a shape determining member that is arranged near a molten metal surface of a casting held in the holding furnace, and that determines a sectional shape of the molten metal by the molten metal passing through the shape determining member; a cooling portion that cools and solidifies the molten metal that has passed through the shape determining member; and a molten metal cooling portion that lowers a temperature of the molten metal held in the holding furnace.
Abstract:
A free casting method according to the present invention includes, a lead-out step for leading out molten metal from a lead-out area (P) provided in a source of supply, e.g. a surface level of the molten metal, to retain the molten metal temporarily by surface films (F) generated on an outer surface, and a forming step for obtaining a formed body by solidifying retained molten metal (MS) led out along a set passage (L1) depending on a desired casting shape, wherein the retained molten metal is solidified after being formed into the desired casting shape by applying an external force thereto at positions between an unrestrained root portion of the retained molten metal in vicinity of the surface level of the molten metal and a solidification interface defined as a boundary between the retained molten metal and the formed body in the forming step.
Abstract:
This invention aims to provide a recycled magnesium alloy having a good corrosion resistance and a process for producing the same. The process of the present invention comprises an adjusting step of adjusting composition of molten metal of a magnesium alloy so as to comprise, by mass: Al: 5 to 10 %, Zn: not less than 1 % and not less than three times of Cu content (%), Mn: 0.1 to 1.5 % and the remainder: Mg and impurities with or without one or more reforming elements. While the upper limit of the Al content is restricted to a low level, the Zn content is increased in accordance with the Cu content. Therefore, the recycled magnesium alloy produced by this process can effectively suppress corrosion caused by Cu, which is one of corrosion-causing elements.
Abstract:
In an internal combustion engine (10), oil in an oil pan (21) is pressure-fed to lubrication sites through operation of an oil pump (22). After being used for lubrication of the lubrication sites, the oil runs down and collects in the oil pan (21). The internal combustion engine (10) is provided with a blow-by gas process device (40) including a communication passageway (48) that connects a portion of the intake passageway (12) on the downstream side of the throttle valve (13) in the intake flow direction and an interior of the crankcase (15) in communication. A pressure chamber (47) to which an end portion of the communication passageway (48) is open is defined in the interior of the crankcase (15). Oil scattered in the interior of the crankcase (15) is introduced into an interior of the pressure chamber (47) before mixing with the oil collected in the oil pan (21).